DeepBSDE: Discussion of Deep learning-based
numerical methods for high-dimensional parabolic
partial differential equations and backward
stochastic differential equations by E, Han,
Jentzen

Rachel Childers

2025-10-02

Outline

» Motivation

» Forward-Backward Stochastic Differential Equations
(FBSDEs)

» Equivalence to PDEs by Noninear Feynman Kac

» Numerical Methods: DeepBSDE

» Comparison: optimal control by HJB, FBSDE, and Pontryagin

Motivation

» Econ & finance optimization problems have special structure
» Option pricing: terminal instead of initial conditions
» Investment: terminal and initial conditions
» HJB equation is one representation of optimality conditions
» “Closed loop” control: find feedback rule
» Amenable to generic PDE solvers like (Deep Galerkin) PINNs
» Equivalent representation: (Stochastic) Pontryagin Maximum
Principle
» “Open loop” control: find time path
» Needs methods that find whole sequence
> Special case of Nonlinear Feynman-Kac lemma
» Certain nonlinear PDEs have representation as FBSDEs
» Coupled system of SDEs with states solved forward and values
and costates solved backwards
» Deep BSDE: find neural network that represents time path
» Benefits: no need for Hessians, and stochastic solution means
some integrals can be solved by Monte Carlo

Nonlinear Feynman Kac

» Shows equivalence between PDE and FBSDE representations
» Class of PDEs we can handle: nonlinear parabolic
ou -
E + ﬂ[u]($7 t) + h(l’, u(x, t>> X (vmu)(xa t)v t) =0
» Terminal condition u(x,T') = g(x)
Alu] == (Vou) (2,)p(z, t) + 5Tr(A [u](z, 1) EDT)
FBSDE connects deterministic PDE to stochastic processes
Alu] is infinitesimal generator of a forward process
> dx(t) = p(z, t)dt + Z(z, t)dw(t)
» Initial condition: x(0) =&
FBSDE representation adds additional backward processes
» Value: y(t) = u(z(t),t)
» Co-state: 2(t) = X (x(t),t)(V u)(z(t),t)
Accompany x(t) by a backward process, solved from T to t

vvyy

v

v

dy(t) = —h(x(t),y(t), 2(t), t)dt + z(t) "dw(t)

v

Terminal condition y(T") = g(x(T))

Derivation (from Pardoux and Rdscanu (2014))
» Will show a solution y(t) of the FBSDE is a realization of a

solution of the PDE
» Rewrite backward process in integral form

T T
y(t) = g(x(T))+ / h(x(s),y(s), 2(5), 5)ds— / 2T (s)dw(s)

> Plug in PDE —h(...) = 2% + Au](x,)

T T
) = o(a(T)~ [(5 (s) o)+ Al s [()t

> Replacing z(t) = T (V u)(z(t),t), y(t) = g(x(T))—

T T
[(Gt) A s [2T (T, (w0), Dt

Derivation, ctd
» Recall Ito’s lemma: if dz(t) = p(z, t)dt + X(x, t)dw(t), then

du(x(t),t) = ZQZ((t), t)dt+Alu](z, t)dt+XT (V 4u) (z(t), t)dw(t)

» In integral form u(z(T),T) — u(xz(t),t) =
T
/t Gt 5) + Al lds + [59,0 a(s), ()
» Replace this term in BSDE y(t) = g(x(T'))—

/[ZZ(&:(S),s)+/l[u](x,s)]ds_/ ST (V) (@(t), t)dw(s)

» Becomes y(t) = g(z(T)) — u(z(T),T
» Impose terminal condition g(x(T)) =
» Obtain equivalence: y(t) = u(z(t),t)

Computation

» Feynman Kac typically is presented in terms of expectations
» u(x,t) = Elu(z(t), t)|x(t) = z] = Ely(t)|xz(t) = z] is
deterministic
» To solve, generate paths starting at = and take average
» Forward part: Simulate using standard SDE solver:
dz(t) = p(x(t), t)dt + S(z(t), t) " dw(t)
» Euler-Maruyama: z(t + At) =
> x(t) + p(x(t), t) At + X(x(t), t)(w(t + At) — w(t))
» Just a left Riemann sum, as in definition of Ito integral
» Backward part: challenging! Where does z(t) come from?
> y(t) =u(z(t), t), 2(t) = X" (x(t),)V u(z(t), t), so z
should be a function of the path xz(¢) just like y.
» If we knew that function, then we could solve for y(t) by
solving diffusion backwards from known terminal condition
» Could use, e.g., reverse Euler-Maruyama
» The problem is, we don't generally know z(t), so we can't
solve sequentially

Aside: classical Feynman Kac

» If we can solve out for relationships in closed form, we
eliminate need for neural networks

» Special-case: semilinear parabolic PDEs

> hiz(t),u(z,t), Vyu(z,t) = —V(z, t)u(x,t) + f(x,t)
» Can show

> u(z,t) = Elexp([]" V(x(s),s))dsg(z(T)) +

[T exp([7 Vi(a(s), s))ds f(w(r), T)dr|z(t) = a]

» In this setting, only need to simulate z(t) forward, no

backward part
» Very easy, works for pricing European options!

https://en.wikipedia.org/wiki/Feynman%E2%80%93Kac_formula

DeepBSDE: Intuition

» If we don't know z() as a function of x(t), just conjecture
some function z(t) = V(z(t),0)

» Likewise guess an initial condition 2 (6) for y(0)

» Given a guess 6, we can simulate x(t), obtain z(¢;), and plug
this into SDE to get y(¢;6) and solve forwards

» What can go wrong?
» You might not hit the terminal condition.

» How to fix it
» Adjust @ until you do hit terminal condition
» Set up loss function as (y(T';) — g(x(T))?

» To ensure correct function can be found, use function class
with universal approximation property to parameterize
UB),V(x(t),0): neural networks!

» Minimize loss by SGD or your favorite gradient-based
optimizer

DeepBSDE: algorithm

» Inputs: Learning rate A, Neural networks V(x,6°),2(0°)
» Outputs: trained neural networks V(z, M) 1/ (9M)
» Form=0..M—-1
> 2(0) = & wg' =0 y(0) =UO™)
» Forn=0..N—-1
> wlg = w4+ 20, 2~ e N(0, At)
> xn+1 =
’ yn+1 _yn h(wn 7yn 7V(anLI’0)7tn)At+
> 9™ (0) = |y - 9(%”)”2
b ML = 9T AV ™ (07

DeepBSDE in Pictures

u(to, Xi,) u(tn, Xy,) (e, Xy) ——> e -1, X,) u(ty, Xy,)
k) k)
[w(:o.x,og—l (Vu(t.,x,,))—/ (Vu(tz.Xb) AAAAAA] (Yt %,)—
k) k)
fl Y H [
1 1 1
1 1 3
i) Iy
N P . -) .
X,) { X X, > e { X Xy)
W) W) — — Wiy = W)
t=ty

Figure 1: Rough sketch of the architecture of the deep BSDE solver.

Figure 1: Architecture Diagram (E, Han, and Jentzen (2017))

Dimensionality and costs

» Time-dependence of z(¢) function adds an input variable to
state dimension, but only 1
» Big savings relative to HJB approaches: no second derivatives!
» Hessians can be computed by Autodiff with a forward and
backward pass, but may need mixed mode, which can
challenge some AD systems, and in general has quadratic costs
in parameter dimension, instead of linear for just gradients (cf
“cheap gradient principle” of Griewank and Walther (2008))
» Cost is Monte Carlo integration has \/samples convergence
rate, so is slow for high accuracy, esp in low dimensions
» Variance of samples can be high depending on process
» Consider range of variance-reducing tricks common in Monte

Carlo including control variates, importance sampling, etc (see
Wang et al. (2019))

Performance
» Test case: 100-d HJB
Gi(2,) + (Agu)(z,t) = [(Vu) (@, 8)]3a
» Moderate accuracy, moderate speed
» But works in high dimension

Number | Mean | Standard | Relative | Standard | Mean | Standard | Runtime
of of Y®m | deviation | L'-appr. | deviation | of the | deviation in sec.
iteration of YOm error of the loss of the for one
steps m relative | function loss realization
L'-appr. function of U®m
error
0 0.3167 | 0.3059 0.9310 0.0666 18.4052 | 2.5090
500 2.2785 | 0.3521 0.5036 0.0767 2.1789 0.3848 116
1000 3.9229 | 0.3183 0.1454 0.0693 0.5226 0.2859 182
1500 4.5921 0.0063 0.0013 0.006 0.0239 0.0024 248
2000 4.5977 | 0.0019 0.0017 0.0004 0.0231 0.0026 330

Table 2: Numerical simulations for the deep BSDE solver in Subsection 3.2 in the case of
the PDE (36).

Figure 2: E, Han, and Jentzen (2017) HJB Performance

Optimal Control Application

» For us, PDE will usually be an HJB equation
» Unknown u(x,t) is a value function, dependent on state
» (F)BSDE gives realization of a stochastic process satisfying
optimality
» Unknown is a time path (x(t), y(t), 2(t))
» Some problems may be easier to set up in one formulation or
the other
» Full equivalence easiest to show with some restrictions
» Control affects drift but not volatility
» Some separability in drift term
» Probably these can be relaxed?
» | will show life-cycle consumption-savings problem for
concreteness

Optimal Control Setup

» Optimize max [Et[j;T e P y(c(s))ds + g(a(T))]

> st. da(t) = [f(a) +w — c]dt + 3(a, t)dw(t), a(0) = a,
» Results in HJB equation
pV(a,t) = G¢(a,t) + maxH[V](a, 1)
ce

HV] = {u() + Vala (@) + w— el + 3Tr(V, 25T}

» Subject to V(.,T) = g(a(T')) and a(0) = a,
» Solve Hamiltonian }[[V](a,t) for ¢ to get optimality
» c*(a,t) = (u')"Y(V,(a,t)), eg V,(a,t) for log
» New HIB pV(a,t) = %—Y(a,)+ {u((W) "V, (a, 1))+

Vala O (@) + 0= () Voo)] + 577V 25T}

Converting to FBSDE

» You have some freedom to choose what goes into A vs h
» State and drift in process need not be (z,) in FBSDE
» Typically control c* will depend on value, so you'll want to
shove that part of drift into h
» In option-pricing problems, can use process measure because
there's no control

» For above problem, fits as

v
ot

da(t) = [f(a) + w]dt + X(a, t)dw()
} /c;) fla) +w]+ 2Tr(V,,)

(a,t) + AV](a,t) + h(a,V,5TV,)

<

W) (D DisTy, {a,1)))
TV, (a,) (u) (BT ISV, (a,) — pV(a, t)

Final FBSDE representation

» Forward law
» da(t) =[f(a) + w]dt + X(a, t)dw(t)
» Initial condition a(0) = a,

» Backward law
> dy(t) = —h(a(
> h(.)= ((')(

y(t), z(t), t)dt + 2(t) "dw(t)
)2t)))

(217 2(t) — py(t)
(T) = g(a(T))

)
(=7

—(BT) () (u")
» Terminal condition y

Relation to Pontryagin Maximum Principle

» Classical non-stochastic optimal control represents solution as

w

coupled system of forward and backward ODEs
» State a evolves forward
» Co-state A is V, marginal value of state, solved backwards

Corresponds to FBSDE, except derivative of backward
equation taken with respect to a to get dynamics in V,,

instead of V'
» Need both when stochastic term added

Pontryagin maximum principle: optimize Hamiltonian
H(X a,t) = {ulc(t)) + AMO[f(at) +w —c(t)]}

Optimality: ¢*(t) = argmax# (A, a,t)
cel
Law of motion & = %—%\[= fla)+w—c
Costate evolution: A = pX — &L = pX — AT f/(A)
Terminal condition A(T') = ¢’(a(T)) =0

Optimal Control Numerics

» In non-stochastic setting, solve by shooting

» Guess initial condition

» Solve coupled system of ODEs to get terminal state

» lIterate until terminal condition holds
» Simple special case of DeepBSDE (with no z to find)

» Low-enough dimensional to only need classical optimizer
» Notoriously sensitive for large T'/stiff dynamics

» Needs high precision solvers

» Worrisome for deep learning, which is always low precision

Finite-Horizon Optimal Control Problems

[

|
|
Ay O AL

A

Shooting in a life-cycle consumption problem. Source: Judd, K. (1998), Figure 10.2.

Extensions/Applications

» Since E, Han, and Jentzen (2017), method has been widely
applied and extended
» Huang (2025) explains method with economic applications
» Notes you can get value fun by regressing y(t) on z(t)
» Applications in control and games
» Hu and Lauriere (2024)

» Applications to heterogeneous agents
» Bonnmann and Proehl (2025), Huang (2024)

» Extensions to higher order BSDEs, and methods mixing PDE

and SDE approaches
» Beck, E, and Jentzen (2019), Beck et al. (2021)

» Etc

References |

Beck, Christian, Sebastian Becker, Patrick Cheridito, Arnulf
Jentzen, and Ariel Neufeld. 2021. “Deep Splitting Method for
Parabolic PDEs." SIAM Journal on Scientific Computing 43
(5): A3135-54.

Beck, Christian, Weinan E, and Arnulf Jentzen. 2019. “Machine
Learning Approximation Algorithms for High-Dimensional Fully
Nonlinear Partial Differential Equations and Second-Order
Backward Stochastic Differential Equations.” Journal of
Nonlinear Science 29 (4): 1563-1619.

Bonnmann, Niklas, and Elisabeth Proehl. 2025. “A Global
Solution Method for HACT Models with Aggregate Risk."

References |l

E, Weinan, Jiequn Han, and Arnulf Jentzen. 2017. “Deep
Learning-Based Numerical Methods for High-Dimensional
Parabolic Partial Differential Equations and Backward
Stochastic Differential Equations.” Communications in
Mathematics and Statistics 5 (4): 349-80.

Griewank, Andreas, and Andrea Walther. 2008. Evaluating
Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM.

Hu, Ruimeng, and Mathieu Lauriere. 2024. “Recent Developments
in Machine Learning Methods for Stochastic Control and
Games." Numerical Algebra, Control and Optimization 14 (3):
435-525. https://doi.org/10.3934 /naco.2024031.

Huang, Ji. 2024. “Breaking the Curse of Dimensionality in
Heterogeneous-Agent Models: A Deep Learning-Based
Probabilistic Approach.”

https://doi.org/10.3934/naco.2024031

References Il|

. 2025. “A Probabilistic Solution to High-Dimensional
Continuous-Time Macro and Finance Models.”

Pardoux, Etienne, and Aurel Rascanu. 2014. “Backward

Stochastic Differential Equations.” In Stochastic Differential

Equations, Backward SDEs, Partial Differential Equations,
353-515. Springer.

Wang, Ziyi, Marcus Pereira, loannis Exarchos, and Evangelos
Theodorou. 2019. “Learning Deep Stochastic Optimal Control
Policies Using Forward-Backward SDEs.” In Robotics: Science
and Systems XV. RSS2019. Robotics: Science; Systems
Foundation. https://doi.org/10.15607 /rss.2019.xv.070.

https://doi.org/10.15607/rss.2019.xv.070

