Timing as an Action: Learning When to Observe and Act
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Motivation Model-based Algorithms RL Experiments
In many real-world settings, observations are expensive, forcing agents to commit to For each step, given data {(s;, a;, ki, g, sg) z’j\i1 We test the above algorithms in 3 standard tabular RL environments, augmented with

courses of action for designated periods of time. action cost C' and choice of delay k.

» Estimate P by maximum likelihood
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Figure 2. Summary of disease, glucose, and windy grid environments.

Timing-as-an-action: Setting where G pr(s,a,k) = —C + ¥ 23 TBy  pr 9 [R'(s',a)] is structured reward.
| Evaluation: Algorithms are evaluated in the online setting by average cumulative reward.
We introduce the timing-as-an-action Markov decision process: » Update Q by value iteration in estimated MDP

Sample via e—greedy exploration: w.p. 1 — e execute (a, k) := arg max, j, Q(s,a, k)
= Infinite-horizon MDP M = (S, A, K, P, R,~, C, sg), with delay space

K={12 . K} Guarantees else w.p. € explore: choose a uniformly over A and k = 1.
= Agent maximizes expected v € [0, 1)-discounted sum of per-period primitive In the generative tabular setting with n samples from S x A x K states, the model based approach satisfies RL Results
rewards R : S x A — [0, 1] starting from sy. . A 2 2y ~
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HQ < oo~ 1— HgR’P gRaPHoo " (1 — )2 f;ns}/i HP< 5,0, k) = P(ls, a, k>H1 Simulations confirm the performance gains from model-based and timing-aware methods.
* Per interaction, agents (1) incur a fixed known cost C' € Rx>, (2) observe the state s where wn > 1 — &
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By collapsing the partially observable problem to observation periods, obtain a fully & | . | .
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observed variable-duration MDP with actions (a, k), transitions P(s'|s, a, k) defined by E stimation Perf Episodes Episodes
_ pk PRI stimation rerrormance R
Pa,k = Pg forall (a,k) € A x K, and rewards g ~ G(s,a, k) the distribution over Figure 3. Average cumulative reward and mean L1 error (|| P,x(+|s) — Pax(-]s)|l1 averaged over all s, a, k)
aggregated rewards induced by R and P with expected value across 50 trials, smoothed with a running average over 20 episodes. Shaded regions are std. err.

Timing-aware estimation improves sample efficiency and allows extrapolating across delay lengths.
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E[G(S’ @ k)] =—-C+ zj:O WJE[R@J" a)\s, a]. Estimation error vs. # samples, for different sampling regimes
Table 1. Final average cumulative reward in each setting after 200 episodes (in hundreds).

When a policy 7 interacts continuously with M, it observes a trajectory pelay ia[T’p'zefO_'_f’mlrg] De',?f;gmf’gdjlom De,l?’rflgr;(‘;c'fifg%m
(80, ag, 90, S1, a1, 91, - - -), and its state-action value function of policy 7 is: A " Disease Progression  Windy Grid Glucose
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The optimal policy can be shown to satisfy a modified Bellman equation

Max L1 Estimation Error
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This representation allows RL with a simple model-free baseline: o
o | = o ' ' = Timing-as-an-action poses interesting theoretical and practical challenges for
" Apply Q-learning in reformulated MDP with update o8 0 % N bringing RL into real-world settings with costly observations and actions
@(s, a, k) < g+ wk H}a]j;i @(s’, a k). (2) RS 10 ot 10710 10* 107 10°  10° = Timing-aware model-based method leverages the structure of timing-as-an-action
| " | _ N N N to obtain sample complexity advantages over model-free and timing-naive
Model-based methods can further exploit the special structure of the delay action. —e— Empirical Counts  —— Timing-Naive =~ —— Timing-Aware nodel-based
Figure 1. Estimation error max, g || P, (-|s) — ﬁa,k(-|s)||1 (with 95% CI) for ﬁa,l, ﬁa’g), and ﬁa,l() vs. # of samples N generated from = Estimation using the timing-aware model-based approach is more sample-efficient

three sampling regimes: (a) generative setting, (b) sampling k& = min(K), and (c) sampling k& = max(K). than timing-naive, which can translate into improvements in the RL setting.



