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Motivation

In many real-world settings, observations are expensive, forcing agents to commit to

courses of action for designated periods of time.

Consider the setting where a patient with a chronic illness visits a doctor, who prescribes

them a medication and schedules follow-up appointments. Importantly,

1. The doctor must choose not only which treatment (action) to recommend but also

how long (delay) to recommend it for.

2. The doctor doesn’t observe the patient’s intermediate state or benefit of medication

until the next appointment (no observations of state or reward until after the delay).

3. There is some cost to each appointment (observation and action cost).

Timing-as-an-action: Setting

We introduce the timing-as-an-actionMarkov decision process:

Infinite-horizon MDPM = (S,A,K, P, R, γ, C, s0), with delay space

K = {1, 2, ..., K}.

Agent maximizes expected γ ∈ [0, 1)-discounted sum of per-period primitive
rewards R : S ×A → [0, 1] starting from s0.

Per interaction, agents (1) incur a fixed known cost C ∈ R≥0, (2) observe the state s

and the aggregate reward since last observation g = −C +
∑k−1

j=0 γjrj , and (3)

choose actions and delays according to π : S → ∆(A×K).

State evolves with Markov transition matrix Pa, with entries P (s′|s, a) for k periods.

Reformulation as an MDP

By collapsing the partially observable problem to observation periods, obtain a fully

observed variable-duration MDP with actions (a, k), transitions P (s′|s, a, k) defined by
Pa,k = Pk

a for all (a, k) ∈ A × K, and rewards g ∼ G(s, a, k) the distribution over
aggregated rewards induced by R and P with expected value

E[G(s, a, k)] = −C +
∑k−1

j=0 γjE[R(sj, a)|s, a].

When a policy π interacts continuously with M , it observes a trajectory

(s0, a0, g0, s1, a1, g1, . . .), and its state-action value function of policy π is:

Qπ(s, a, k) = E

[ ∞∑
τ=0

γ

(∑τ−1
τ ′=0 kτ ′

)
gτ |π, s0 = s, a0 = a, k0 = k

]

The optimal policy can be shown to satisfy a modified Bellman equation

Q(s, a, k) = E[G(s, a, k)] + γkEs′∼P (·|s,a,k)[max
a′,k′

Q(s′, a′, k′)] (1)

This representation allows RL with a simple model-free baseline:

Apply Q-learning in reformulated MDP with update

Q̂(s, a, k)← g + γk max
a′,k′

Q̂(s′, a′, k′). (2)

Model-based methods can further exploit the special structure of the delay action.

Model-based Algorithms

For each step, given data {(si, ai, ki, gi, s′i)}
N
i=1

Estimate P̂ by maximum likelihood

P̂ = argmaxp∈P

N∑
i=1

log pai,ki
(s′i|si), (3)

Timing-naive: P = {P : S ×A×K → ∆(S)} is the set of all valid transitions
Timing-aware: P = P1 = {p : pa,k(·|s) = [pa,1]k(·|s),∀(s, a, k) ∈ S ×A×K}, is the 1-step transitions iterated k times.

Estimate R̂ by least squares

R̂ = argminR′∈R
1
N

N∑
i=1

(G
R′,P̂ (si, ai, ki)− gi)2, (4)

where GR′,P ′(s, a, k) = −C +
∑k−1

τ=0 γτEs′∼P ′a,k(·|s)[R
′(s′, a)] is structured reward.

Update Q̂ by value iteration in estimated MDP

Guarantees

In the generative tabular setting with n samples from S×A×K states, the model based approach satisfies∥∥∥Q∗ −Q
π

Q̂

∥∥∥
∞
≤ 2

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+ 2γ

(1− γ)2
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥

1
.

where w.p. ≥ 1− δ∥∥∥G
R̂,P̂
− GR,P

∥∥∥
∞

.
1

(1− γ)

(
SAKε

P̂

)1/2
+

(
G2

maxS2A2K
n

)1/2

+

(
1

(1− γ)2
G2

maxS2A2K
n

ε
P̂

)1/4

,

Here ε
P̂

= maxs,a,k ‖P̂a,k(·|s)− Pa,k(·|s)‖1 is the transition estimation error.

For Timing Naive ε
P̂
. S

√
AK log(1/δ)

n , for Timing Aware ε
P̂
. S

√
A log(K/δ)

n

Total error for timing-aware is Õ(SA3/4K1/2n−1/2) and for timing-naive is Õ(SA3/4Kn−1/2)

Estimation Performance

Timing-aware estimation improves sample efficiency and allows extrapolating across delay lengths.
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Figure 1. Estimation error maxa,s ‖Pa,k(·|s)− P̂a,k(·|s)‖1 (with 95% CI) for P̂a,1, P̂a,5, and P̂a,10 vs. # of samples N generated from

three sampling regimes: (a) generative setting, (b) sampling k = min(K), and (c) sampling k = max(K).

RL Experiments

We test the above algorithms in 3 standard tabular RL environments, augmented with

action cost C and choice of delay k.

  states:
  healthy   unhealthy   dead

  actions:
      treat            don’t treat

Disease Progression 

  states: 
  blood glucose
     70ー80 mg/dL, 
     80ー90, …, 
     340ー350, out of range
  actions:
   insulin amount
      0, 10, 20, 30, 40

Glucose

  states:

  actions:

Windy Grid

Figure 2. Summary of disease, glucose, and windy grid environments.

Evaluation: Algorithms are evaluated in the online setting by average cumulative reward.

Sample via ε−greedy exploration: w.p. 1− ε execute (a, k) := arg maxa,k Q̂(s, a, k)

else w.p. ε explore: choose a uniformly over A and k = 1.

RL Results

Simulations confirm the performance gains frommodel-based and timing-aware methods.
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Figure 3. Average cumulative reward and mean L1 error (‖P̂a,k(·|s)− Pa,k(·|s)‖1 averaged over all s, a, k)

across 50 trials, smoothed with a running average over 20 episodes. Shaded regions are std. err.

Table 1. Final average cumulative reward in each setting after 200 episodes (in hundreds).

Disease Progression Windy Grid Glucose

Timing-Aware 4.26 (4.00–4.53) 81.5 (80.3–82.6) 0.420 (0.287–0.554)

Timing-Naive 4.24 (4.00–4.47) 76.9 (75.0–78.8) 0.334 (0.224–0.443)

Model-Free 3.47 (3.28–3.65) 3.96 (1.83–6.10) 0.270 (0.183–0.356)

Discussion

Timing-as-an-action poses interesting theoretical and practical challenges for

bringing RL into real-world settings with costly observations and actions

Timing-aware model-based method leverages the structure of timing-as-an-action

to obtain sample complexity advantages over model-free and timing-naive

model-based.

Estimation using the timing-aware model-based approach is more sample-efficient

than timing-naive, which can translate into improvements in the RL setting.


