

PROBLEM

Interactions of forward looking heterogeneous agents subject to aggregate disturbances induce a law of motion for distributions. We characterize a tractable subclass admitting an automated, fast, guaranteed accurate approximate solution algorithm generalizing first order DSGE solution methods to allow function-valued states.

- Model: $\mathbb{E}F(x, y, x', y', \sigma) = 0$
 - -x, y (collections of) functions
- Solution: find operators h(x), g(x) s.t. $y = g(x) x' = h(x) + \sigma z'$ satisfy model
- Goal: \tilde{g}_x, h_x : approximate functional derivatives around $\sigma = 0$ steady state by map from basis coefficients to basis coefficients

GENERIC MODEL CLASS

Structure of heterogeneous agent models

1. *Optimization*: Bellman Equation

$$V(X,\epsilon) = \max_{Y=g(X,\epsilon)} u(Y,X,P,\epsilon) + \beta \mathbb{E}$$
$$\int \int V'(X',\epsilon') f_U(U') f_\epsilon(\epsilon',P') dU' d\epsilon'$$
$$\operatorname{st} X' = Q(Y,X,P,P',U')$$

2. *Aggregation*: Kolmogorov Equation

$$f'_X(X') = \int \int f_U(Q_{g(X,\epsilon),X}^{-1}(X'))$$
$$\left| \det \frac{\partial}{dX'} Q_{g(X,\epsilon),X}^{-1}(X') \right| f_X(X) f_\epsilon(\epsilon, P) dX d\epsilon$$

3. Aggregate Shocks: (Functional) AR Processes

$$P_2' = h_P(P_2, \sigma Z')$$

4. Market Clearing: $F(f_X(.), g(.), P) = 0$

Policy, value, distribution function, aggregates $(g(.,.), V(.), f_X(.), P)$ are endogenous states

AUTOMATED SOLUTION OF HETEROGENEOUS AGENT MODELS David Childers, Carnegie Mellon University

CONDITIONS

Represent model equations F as sequence of nodes composed along Directed Acyclic Graph Nodes are functional neural network layers: compose differentiable pointwise nonlinearities f([g(s)])and linear integral operators $\int k(s_2, s_1)[g(s_1)]ds_1$

Setup allows linearization with standard autodiff: functions only evaluated on grid so differentiation and discretization commute. This may require modified representation of model equations, such as by applying change-of-variables.

Eg: $\int V'(g(X) + u)f_U(u)du$ should be $\int V'(s) f_U(s - g(X)) ds$

With regularity conditions on smoothness and graph topology, discretization can be mapped back to function space with vanishing error.

ALGORITHM

1. Replace function-valued states (x, y) = $\{g_j(.)\}_{j=1}^{p^{*}}$ by values at grid points

$$\vec{g}_j = \{g_j(s_{[j]i})\}_{i=1}^{K_j}$$

2. Replace integral operators by quadrature with abcissas at grid

$$\int k(s_2, s_1) g(s_1) ds_1 \approx \sum_{i=1}^{K_{[s_1]}} \pi_i k(s_{2j}, s_{1i}) g(s_{1i})$$

- 3. Solve for steady state vectors $\{g_j^*(s_{[j]i})\}_{i=1}^{K_j}$
- 4. Categorize input $\{\vec{g}_j\}_{j=1}^{2d_2}$, output $\{\vec{g}_{j(p^{\ell})}\}_{p^{\ell}=2d_2+1}^{2d_2+o^{\ell}}$ versions of arguments
- 5. Linearize wrt $\{\vec{g}_{p^{\ell}}\}_{p^{\ell}=1}^{2d_2+o^{\ell}}$ at g^* by autodiff
- 6. Apply post-processing transformations
- 7. Pre, post multiply input Jacobians by interpolation matrix $M_{[j]}$

• Maps grid points to basis $\Phi_{[j]}$ coefs

8. Apply standard linear RE solver to interpolated Jacobians

With structure and post-processing, linearized model is system of *Fredholm Integral Equations*

I +

EXAMPLE: HUGGETT MODEL

 $\ell(w)$

WHY IT WORKS

$$F_{g(.)}[g()] = g(s') + \int k(s', s)[g(s)]ds$$

k(.,.) is product of derivatives along nodes. Algorithm approximates basis projection $\tilde{F}_q \approx$

+
$$\sum_{i,j=1}^{K} \langle k(s',s), \phi_i(s')\varphi_j(s) \rangle \langle ., \varphi_j(s) \rangle \phi_i(s')$$

Input vs. Output distinction, post-processing ensure kernel is interpolated, *I* is identity matrix. This produces solution as a map on basis function coefficients while computing on grid.

verges uniformly.

Total running time is $O(K^3)$ in # of grid points with error proportional to L^{∞} error for K-point interpolation of kernel functions k(.,.). Rates depend on interaction of smoothness of primitives and choice of basis.

One bond consumption-savings model with aggregate and iid idiosyncratic income risk and borrowing constraint. Solve for joint law of wealth distribution m(.), consumption function c(.), interest rate *R* and aggregate income shock *z*.

$$= \mathbb{E}\beta R \int \int g(w' - R(w + z - c(w + z, \ell(w), R)) - s')c(w' + z', \ell'(w'), R')^{-\gamma} ds' dw'$$
(1)

where $c(w, \ell, R) := \min\left\{\ell^{-1/\gamma}, w - \frac{\underline{a}}{R}\right\}$

$$m'(w') = \iint g(w' - R(w + z - c(w + z, \ell(w), R)) - s')m(w)ds'dw$$

$$(2)$$

$$z' = \rho_z z + \sigma \epsilon' \tag{3}$$

$$(w + z - c(w + z, \ell(w), R))m(w)dw = 0 \quad (4)$$

Uses Parameterized Expectations Euler equation in expected marginal utility $\ell()$ of cash-on-hand wto ensure smooth compositional structure.

Impulse Responses of Consumption Function and Wealth Distribution to Aggregate Income shock

Convergence Guarantees: Under model form and smoothness conditions can apply Young's Inequality:

 L^{∞} -approximation of $k(.,.) \implies$ $\sup_{\|g\|_{L^2}=1} \left\| (\tilde{F}_g - F_g)[g(.)] \right\|_{L^2} \to 0$

Childers (2018): this uniform (operator norm) approximation + Blanchard-Kahn (1980)-type eigenvalue conditions \implies DSGE solver output con-

