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Interactions of forward looking heteroge-
neous agents subject to aggregate disturbances in-
duce a law of motion for distributions. We char-
acterize a tractable subclass admitting an auto-
mated, fast, guaranteed accurate approximate so-
lution algorithm generalizing first order DSGE
solution methods to allow function-valued states.

e Model: EF (z,y,z",y",0) =0
— x,y (collections of) functions

e Solution: find operators h(x), g(z) s.t.
y = g(x) 2’ = h(x) 4+ 0z’ satisty model

~

o Goal: g, h,: approximate functional deriva-
tives around o = 0 steady state by map
from basis coetficients to basis coefficients

AUTOMATED SOLUTION OF HETEROGENEOUS AGENTMODELS
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PROBLEM CONDITIONS WHY IT WORKS

Represent model equations F' as sequence of
nodes composed along Directed Acyclic Graph
Nodes are functional neural network layers: com-
pose differentiable pointwise nonlinearities f(|g(s)])
and linear integral operators [ k(sz2,s1)[g(s1)]ds1

Setup allows linearization with standard au-
toditf: functions only evaluated on grid so differ-
entiation and discretization commute. This may
require modified representation of model equa-
tions, such as by applying change-of-variables.

Eg: [V'(g(X) + w)fy(u)du should be
J V() fu(s —g(X))ds

With regularity conditions on smoothness and
graph topology, discretization can be mapped
back to function space with vanishing error.

With structure and post-processing, linearized
model is system of Fredholm Integral Equations

Fyols0) = 9(s) + [ K5/ 9)lg(s))ds
k(.,.) is product of derivatives along nodes.
Algorithm approximates basis projection I, ~

T+ 37 (k(s,5),64(5)0s()) (05 (5)) ()

1,7=1

Input vs. Output distinction, post-processing en-
sure kernel is interpolated, I is identity matrix.

This produces solution as a map on basis func-
tion coefficients while computing on grid.

Convergence Guarantees:
Under model form and smoothness conditions
can apply Young’s Inequality:
L°° —approximation of k(.,.) =
sup||(Fy — Fylg()]
gllp2=—
Childers (2018): this uniform (operator norm) ap-

proximation + Blanchard-Kahn (1980)-type eigen-
value conditions = DSGE solver output con-
verges uniformly.

Total running time is O(K?) in # of grid points
with error proportional to L error for K —point
interpolation of kernel functions k(.,.). Rates de-
pend on interaction of smoothness of primitives
and choice of basis.
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GENERIC MODEL CLASS ALGORITHM EXAMPLE: HUGGETT MODEL

Structure of heterogeneous agent models

1. Optimization: Bellman Equation

€)= max u(Y,X,Pe)+ SE
) yax ( )+

VI(X,e
//V/(X'>6/)fU(U')fe(€/aP’)dU/d€/
StX, — Q(Y,ij,P/,U/)

2. Aggregation: Kolmogorov Equation

R = [ [ (@ x (X
o

det -2 Qu o x (X)| fx (X) fule, P)dX de

t—
“AX

3. Aggregate Shocks: (Functional) AR Processes
Py = hp(P2,0Z")
4. Market Clearing: F(fx(.),g(.),P) =0

Policy, value, distribution function, aggregates
(g(.,.),V(.), fx(.), P) are endogenous states

1. Replace function-valued states (z,y) =

195 (-) §i1 by values at grid points

R K,
gi; = {gj(s[j]i)}izl

2. Replace integral operators by quadrature
with abcissas at grid

K[81]

/k’(SQ,Sl)g(Sl)dsl ~ Z 7'('2']6(82]',81@')9(81@')

1=1

3. Solve for steady state vectors {g; (s[j]i)}fi"l

4. Categorize input {g }?iﬁ p
2d2_|_ Oe

{Giwt) } e, 1 versions of arguments

output

2d2 —|—O£
p=1

6. Apply post-processing transtformations
/7. Pre, post multiply input Jacobians by inter-
polation matrix M

5. Linearize wrt { g, at g* by autodiff

e Maps grid points to basis ®;; coefs

8. Apply standard linear RE solver to interpo-
lated Jacobians

One bond consumption-savings model with
aggregate and iid idiosyncratic income risk and
borrowing constraint. Solve for joint law of wealth
distribution m(.), consumption function ¢(.), in-
terest rate R and aggregate income shock z.

l(w) = 4ZﬁR//g(w’—R(erz—c(wJrz,ﬁ(w),lf{))—

Ne(w' + 2,0 (W), R)~"ds du' (1)
where ¢(w, £, R) := min {8_1/7, w — %}
m'(w) = [ [ gtw' = Bw+ 2~ clw+
l(w), R)) — 8" )m(w)ds'dw (2)
?=p,z+ o€ (3)

/(w + 2z —clw+ z,l(w), R))m(w)dw =0 (4)

Uses Parameterized Expectations Euler equation
in expected marginal utility ¢() of cash-on-hand w
to ensure smooth compositional structure.

] =
m_t{w)

Impulse Responses of Consumption Function and
Wealth Distribution to Aggregate Income shock



