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PROBLEM
Interactions of forward looking heteroge-

neous agents subject to aggregate disturbances in-
duce a law of motion for distributions. We char-
acterize a tractable subclass admitting an auto-
mated, fast, guaranteed accurate approximate so-
lution algorithm generalizing first order DSGE
solution methods to allow function-valued states.

• Model: EF (x, y, x′, y′, σ) = 0

– x, y (collections of) functions

• Solution: find operators h(x), g(x) s.t.
y = g(x) x′ = h(x) + σz′ satisfy model

• Goal: g̃x, h̃x: approximate functional deriva-
tives around σ = 0 steady state by map
from basis coefficients to basis coefficients

CONDITIONS
Represent model equations F as sequence of

nodes composed along Directed Acyclic Graph
Nodes are functional neural network layers: com-
pose differentiable pointwise nonlinearities f([g(s)])
and linear integral operators

∫
k(s2, s1)[g(s1)]ds1

Setup allows linearization with standard au-
todiff: functions only evaluated on grid so differ-
entiation and discretization commute. This may
require modified representation of model equa-
tions, such as by applying change-of-variables.

Eg:
∫
V ′(g(X) + u)fU (u)du should be∫

V ′(s)fU (s− g(X))ds
With regularity conditions on smoothness and

graph topology, discretization can be mapped
back to function space with vanishing error.

WHY IT WORKS

With structure and post-processing, linearized
model is system of Fredholm Integral Equations

Fg(.)[g()] = g(s′) +

∫
k(s′, s)[g(s)]ds

k(., .) is product of derivatives along nodes.
Algorithm approximates basis projection F̃g ≈

I +
K∑

i,j=1

〈k(s′, s), φi(s
′)ϕj(s)〉 〈., ϕj(s)〉φi(s′)

Input vs. Output distinction, post-processing en-
sure kernel is interpolated, I is identity matrix.

This produces solution as a map on basis func-
tion coefficients while computing on grid.

Convergence Guarantees:
Under model form and smoothness conditions

can apply Young’s Inequality:
L∞−approximation of k(., .) =⇒

sup
‖g‖L2=1

∥∥∥(F̃g − Fg)[g(.)]
∥∥∥
L2
→ 0

Childers (2018): this uniform (operator norm) ap-
proximation + Blanchard-Kahn (1980)-type eigen-
value conditions =⇒ DSGE solver output con-
verges uniformly.

Total running time isO(K3) in # of grid points
with error proportional to L∞ error for K−point
interpolation of kernel functions k(., .). Rates de-
pend on interaction of smoothness of primitives
and choice of basis.

EXAMPLE: HUGGETT MODEL

One bond consumption-savings model with
aggregate and iid idiosyncratic income risk and
borrowing constraint. Solve for joint law of wealth
distribution m(.), consumption function c(.), in-
terest rate R and aggregate income shock z.

`(w) = EβR
∫ ∫

g(w′ −R(w + z − c(w + z, `(w), R))−

s′)c(w′ + z′, `′(w′), R′)−γds′dw′ (1)

where c(w, `,R) := min
{
`−1/γ , w − a

R

}
m′(w′) =

∫ ∫
g(w′ −R(w + z − c(w + z,

`(w), R))− s′)m(w)ds′dw (2)
z′ = ρzz + σε′ (3)∫

(w + z − c(w + z, `(w), R))m(w)dw = 0 (4)

Uses Parameterized Expectations Euler equation
in expected marginal utility `() of cash-on-hand w
to ensure smooth compositional structure.

Impulse Responses of Consumption Function and
Wealth Distribution to Aggregate Income shock

GENERIC MODEL CLASS
Structure of heterogeneous agent models

1. Optimization: Bellman Equation

V (X, ε) = max
Y=g(X,ε)

u(Y,X, P, ε) + βE∫ ∫
V ′(X ′, ε′)fU (U ′)fε(ε

′, P ′)dU ′dε′

st X ′ = Q(Y,X, P, P ′, U ′)

2. Aggregation: Kolmogorov Equation

f ′X(X ′) =

∫ ∫
fU (Q−1g(X,ε),X(X ′))∣∣∣∣det

∂

dX ′
Q−1g(X,ε),X(X ′)

∣∣∣∣ fX(X)fε(ε, P )dXdε

3. Aggregate Shocks: (Functional) AR Processes

P ′2 = hP (P2, σZ
′)

4. Market Clearing: F (fX(.), g(.), P ) = 0

Policy, value, distribution function, aggregates
(g(., .), V (.), fX(.), P ) are endogenous states

ALGORITHM
1. Replace function-valued states (x, y) =

{gj(.)}p
`

j=1 by values at grid points

~gj = {gj(s[j]i)}
Kj

i=1

2. Replace integral operators by quadrature
with abcissas at grid

∫
k(s2, s1)g(s1)ds1 ≈

K[s1]∑
i=1

πik(s2j , s1i)g(s1i)

3. Solve for steady state vectors {g∗j (s[j]i)}
Kj

i=1

4. Categorize input {~gj}2d2j=1, output

{~gj(p`)}
2d2+o

`

p`=2d2+1
versions of arguments

5. Linearize wrt {~gp`}2d2+o
`

p`=1
at g∗ by autodiff

6. Apply post-processing transformations
7. Pre, post multiply input Jacobians by inter-

polation matrix M[j]

• Maps grid points to basis Φ[j] coefs

8. Apply standard linear RE solver to interpo-
lated Jacobians


