Carnegie Mellon University

Automated Solution of Heterogeneous Agent Models

David Childers, Carnegie Mellon University

CONDITIONS

Represent model equations F as sequence of nodes composed along Directed Acyclic Graph Nodes are functional neural network layers: compose differentiable pointwise nonlinearities $f([g(s)])$ and linear integral operators $\int k\left(s_{2}, s_{1}\right)\left[g\left(s_{1}\right)\right] d s_{1}$

Setup allows linearization with standard autodiff: functions only evaluated on grid so differentiation and discretization commute. This may require modified representation of model equations, such as by applying change-of-variables.

Eg: $\int V^{\prime}(g(X)+u) f_{U}(u) d u$ should be $\int V^{\prime}(s) f_{U}(s-g(X)) d s$

With regularity conditions on smoothness and graph topology, discretization can be mapped back to function space with vanishing error.

ALGORITHM

1. Replace function-valued states $(x, y)=$ $\left\{g_{j}(.)\right\}_{j=1}^{p^{\ell}}$ by values at grid points

$$
\vec{g}_{j}=\left\{g_{j}\left(s_{[j] i}\right)\right\}_{i=1}^{K_{j}}
$$

2. Replace integral operators by quadrature with abcissas at grid
$\int k\left(s_{2}, s_{1}\right) g\left(s_{1}\right) d s_{1} \approx \sum_{i=1}^{K_{\left[s_{1}\right]}} \pi_{i} k\left(s_{2 j}, s_{1 i}\right) g\left(s_{1 i}\right)$
3. Solve for steady state vectors $\left\{g_{j}^{*}\left(s_{[j] i}\right)\right\}_{i=1}^{K_{j}}$
4. Categorize input $\left\{\vec{g}_{j}\right\}_{j=1}^{2 d_{2}}$, output $\left\{\vec{g}_{j\left(p^{\ell}\right)}\right\}_{p^{p}=2 d_{2}+1}^{2 d_{2+}{ }^{\ell}}$ versions of arguments
5. Linearize wrt $\left\{\vec{g}_{p^{\ell}}\right\}_{p^{\ell}=1}^{2 d_{2}+o^{\ell}}$ at g^{*} by autodiff
6. Apply post-processing transformations
7. Pre, post multiply input Jacobians by interpolation matrix $M_{[j]}$

- Maps grid points to basis $\Phi_{[j]}$ coefs

8. Apply standard linear RE solver to interpolated Jacobians

WHY IT WORKS

With structure and post-processing, linearized model is system of Fredholm Integral Equations

$$
F_{g(.)}[g()]=g\left(s^{\prime}\right)+\int k\left(s^{\prime}, s\right)[g(s)] d s
$$

$k(.,$.$) is product of derivatives along nodes.$
Algorithm approximates basis projection $\tilde{F}_{g} \approx$
$I+\sum_{i, j=1}^{K}\left\langle k\left(s^{\prime}, s\right), \phi_{i}\left(s^{\prime}\right) \varphi_{j}(s)\right\rangle\left\langle\cdot, \varphi_{j}(s)\right\rangle \phi_{i}\left(s^{\prime}\right)$
Input vs. Output distinction, post-processing ensure kernel is interpolated, I is identity matrix.

This produces solution as a map on basis function coefficients while computing on grid.

Convergence Guarantees:

Under model form and smoothness conditions can apply Young's Inequality:
L^{∞}-approximation of $k(.,.) \Longrightarrow$
$\sup _{\|g\|_{L^{2}}=1}\left\|\left(\tilde{F}_{g}-F_{g}\right)[g(.)]\right\|_{L^{2}} \rightarrow 0$
Childers (2018): this uniform (operator norm) approximation + Blanchard-Kahn (1980)-type eigenvalue conditions \Longrightarrow DSGE solver output converges uniformly.

Total running time is $O\left(K^{3}\right)$ in \# of grid points with error proportional to L^{∞} error for K-point interpolation of kernel functions $k(.,$.$) . Rates de-$ pend on interaction of smoothness of primitives and choice of basis.

Example: Huggett Model

One bond consumption-savings model with aggregate and iid idiosyncratic income risk and borrowing constraint. Solve for joint law of wealth distribution $m($.$) , consumption function c($.$) , in-$ terest rate R and aggregate income shock z.

$$
\ell(w)=\mathbb{E} \beta R \iint g\left(w^{\prime}-R(w+z-c(w+z, \ell(w), R))-\right.
$$

$$
\begin{equation*}
\left.s^{\prime}\right) c\left(w^{\prime}+z^{\prime}, \ell^{\prime}\left(w^{\prime}\right), R^{\prime}\right)^{-\gamma} d s^{\prime} d w^{\prime} \tag{1}
\end{equation*}
$$

$$
\text { where } c(w, \ell, R):=\min \left\{\ell^{-1 / \gamma}, w-\frac{a}{R}\right\}
$$

$$
m^{\prime}\left(w^{\prime}\right)=\iint g\left(w^{\prime}-R(w+z-c(w+z,\right.
$$

$$
\begin{equation*}
\left.\ell(w), R))-s^{\prime}\right) m(w) d s^{\prime} d w \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
z^{\prime}=\rho_{z} z+\sigma \epsilon^{\prime} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\int(w+z-c(w+z, \ell(w), R)) m(w) d w=0 \tag{4}
\end{equation*}
$$

Uses Parameterized Expectations Euler equation in expected marginal utility $\ell()$ of cash-on-hand w to ensure smooth compositional structure.

Impulse Responses of Consumption Function and Wealth Distribution to Aggregate Income shock

