
Timing as an Action: Learning When to Observe and Act

Helen Zhou∗ Audrey Huang∗ Kamyar Azizzadenesheli David Childers Zachary C. Lipton
CMU UIUC NVIDIA CMU CMU

Abstract

In standard reinforcement learning setups, the
agent receives observations and performs ac-
tions at evenly spaced intervals. However, in
many real-world settings, observations are ex-
pensive, forcing agents to commit to courses
of action for designated periods of time. Con-
sider that doctors, after each visit, typically
set not only a treatment plan but also a follow-
up date at which that plan might be revised.
In this work, we formalize the setup of timing-
as-an-action. Through theoretical analysis
in the tabular setting, we show that while
the choice of delay intervals could be naively
folded in as part of a composite action, these
actions have a special structure and handling
them intelligently yields statistical advantages.
Taking a model-based perspective, these gains
owe to the fact that delay actions do not add
any parameters to the underlying model. For
model estimation, we provide provable sample-
efficiency improvements, and our experiments
demonstrate empirical improvements in both
healthcare simulators and classical reinforce-
ment learning environments.

1 INTRODUCTION

In the real-world, decisions are often spread across
irregular intervals of time. After each visit, doctors
must commit to not only a course of treatment but
also to a follow up plan. Each office visit offers an op-
portunity to gain fresh information and course correct
if the current treatment regime is unsuccessful. On
the other hand, excessive visits are expensive, consum-
ing hospital resources and consuming time that could
be spent on patients in greater need. Thus doctors

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

must trade off the value of information gained the cost
of more frequent opportunities to observe and inter-
vene. Similarly, research advisors must decide not only
how to advise students in each meeting, but also how
frequently to schedule these touchpoints. Economists
have considered related scenarios where firms incur a
cost for observing market state and must set pricing
policies that will hold in between observations (Mankiw
and Reis, 2002; Stokey, 2008). When the state is fully
unobserved between actions, agents must anticipate
both the state and the speed at which their information
of the state will go stale in order to choose both action
and time to next observation.

Several works in disease progression modeling have
applied multi-state models, which assign probabilities
or intensities to transitions between different discrete
states, to capture state transitions across periods of
non-observation (Jackson, 2011; Young et al., 2020;
Lorenzi et al., 2019; Cheung et al., 2022). For car-
diovascular disease, Lindbohm et al. (2019) utilized
multi-state Markov models to estimate rates of pro-
gression for different risk groups, demonstrating how
different screening intervals can lead to different trade-
offs between cost and quality-adjusted life years. Breast
cancer screening has been the subject of substantial
controversy (Esserman, 2017; Marmot et al., 2013),
with different organizations recommending different
screening policies (Ren et al., 2022). However, the
prior literature leaves open the question of how a re-
inforcement learner ought to go about learning a joint
policy over actions and observation intervals.

In this work, we explore how one might learn policies
in an action space augmented by the choice of when
to observe and take the next action. We show that
this setting is amenable to standard model-free and
model-based reinforcement learning algorithms in this
augmented action space, but also propose a new timing-
aware model-based approach which can leverage the
temporal nature of the timing action. We prove theo-
retically that the timing-aware algorithm has improved
sample efficiency compared to the aforementioned stan-
dard approaches, which arises from more efficient model
estimation, and empirically characterize the estimation

Timing as an Action: Learning When to Observe and Act

error rates of timing-aware, timing-naive, and model-
free strategies under various quantities of samples and
exploration policies, showing that the timing-aware
strategy is able to consistently achieve the lowest es-
timation error with fewer samples. In the disease pro-
gression, windy gridworld, and glucose reinforcement
learning environments, we demonstrate empirically that
timing-aware learning consistently achieves the lowest
estimation error the quickest, and is also able to achieve
the highest average cumulative reward. At the same
time, we empirically find that low estimation error is
not always necessary for good performance as measured
by average cumulative reward. Finally, we release our
timing-as-an-action simulators to encourage further
model and algorithmic development in this setting.

2 TIMING-AS-AN-ACTION

Consider the motivating setting where a patient with
a chronic illness visits a doctor, who prescribes them
a daily medication and schedules a follow-up appoint-
ment. We design the timing-as-an-action problem set-
ting to mimic this interaction dynamic, where impor-
tantly, (1) the doctor must choose not only which treat-
ment (action) to recommend but also how long (delay)
to recommend it for, (2) the doctor does not observe
the patient’s intermediate state or the benefit of the
medication until the next appointment (no observations
of state or reward until after the delay), (3) there is
some cost to each appointment (observation and action
cost). With these characteristics in mind, we define the
timing-as-an-action Markov decision process (MDP)
and reinforcement learning (RL) setup.

Timing-as-an-action MDP The timing-as-an-
action Markov decision process is an infinite-horizon
MDP defined by the tupleM = (S,A,K, P,R, γ, C, s0),
with state space S, action space A, and delay space
K = {1, 2, ...,K}, where K ∈ N. The delay space K
represents the set of numbers of timesteps for which
an action can be repeated, and a policy in the timing-
as-an-action MDP must make decisions over both ac-
tions and how long to take them for (the delay), i.e.,
π : S → ∆(A × K), where ∆ indicates the proba-
bility simplex. Note that with different choices of k,
the resulting sequence of observations will be unevenly
spaced in terms of the underlying timestep, which we
will refer to as the primitive timestep. The underlying
one-step reward function, or primitive reward function
R : S × A → [0, 1], is assumed to be deterministic
and in a bounded nonnegative interval. Additionally,
there is a discount factor γ ∈ [0, 1); a fixed, known
interaction cost C ∈ R≥0; and a deterministic starting
state s0. The k-step transition probabilities are given
by P : S ×A×K → ∆(S), where ∆ is the probability

simplex, and P (s′|s, a, k) denotes the probability of
transitioning to a next state s′ after taking action a
for k timesteps from a state s.

Importantly, the true transition probabilities P have
the structure that the k-step transitions are induced by
the 1-step transitions. Before formalizing this property
we introduce some additional notation. For any valid
transition P ′, let P ′

a,k(s
′|s) := P ′(s′|s, a, k) for short,

and let the bolded version P′ denote the corresponding
A×K×S×S tensor, where indexing into the tensor is
denoted asP′[a, k, s, s′] := P ′(s′|s, a, k), and we also de-
note P′

a,k := P′[a, k, :, :] and P′
a,k(s

′|s) := P′
a,k[s, s

′].
In the timing-as-an-action MDP, we have Pa,k = Pk

a,1

for all (a, k) ∈ A×K, which refers to the one-step tran-
sition probability matrix multiplied by itself k times.

Timing-as-an-action RL setup In the timing-as-
an-action RL setup, the agent alternately observes a
state s, chooses an action a to commit to, as well as a
delay k, that corresponds to the number of timesteps
the action a is played for. The agent then observes
state s′ as well as the aggregated k-step reward g,

g = −C +
∑k−1

j=0 γ
jrj , (1)

that is the discounted sum of the (unobserved) one-
step rewards encountered along the k steps of taking
action a, from which C, the cost of interaction, is
subtracted. For clarity, one step of an agent’s inter-
action with the environment env = M , i.e. calling
s’, g = env.step(a,k), is summarized below (ignor-
ing termination conditions and done’s for simplicity):

Timing-as-an-action env.step(a,k)

Given: env = M , current state s.

Initialize s0 = s. For j = 0, . . . , k − 1:

1. Sample rj ∼ R(sj , a)

2. Transition to sj+1 ∼ P (·|sj , a, 1)

Out: aggregate reward g = −C+
∑k−1

j=0 γ
jrj ; next

state s′ = sk

Crucially, the intermediate states (s1, . . . , sk−1) and
intermediate one-step rewards (r1, . . . , rk−1) are not
observed—only sk and the aggregate rewards g (defined
above) are. This captures the challenges of learning
when to observe, core to healthcare applications as
discussed previously, and distinguishes our problem
setting from the “standard” RL setup.

Value functions We call G : S × A × K →
∆([−C, 1

1−γ − C]) the distribution over aggregated re-

wards induced by R and P , i.e., g ∼ G(s, a, k), with
expected value

E[G(s, a, k)] = −C +
∑k−1

j=0 γ
jE[R(sj , a)|s, a].

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

When a policy π interacts continuously with M , it
observes a trajectory (s0, a0, g0, s1, a1, g1, . . .), and its
state-action value function of policy π is the expectation
of its total discounted return over the infinite horizon
of interaction:

Qπ(s, a, k)

= E

[∞∑
τ=0

γ(
∑τ−1

τ′=0
kτ′)gτ |π, s0 = s, a0 = a, k0 = k

]

and its state value function is V π(s) =
Ea,k∼π(·|s)[Q

π(s, a)]. Lastly, the goal of the timing-as-
an-action reinforcement learning problem is to find the
optimal policy π∗ = argmaxπ:S→∆(A×K) V

π(s0) that
learns which actions and delays to take in order to
maximize its total discounted return. We define the
optimal value function Q∗ := Qπ∗

, and same for V ∗.

3 RELATED WORK

The timing-as-an-action framework is most closely re-
lated to the options and hierarchical RL literatures, but
there are key differences, described shortly, that make
them very different learning problems. Broadly, an
option is a pre-defined, temporally extended sequence
of actions. An MDP endowed with a set of options
is called a semi-MDP, and the agent’s policy chooses
options to take. The options framework has been com-
monly used for reasoning at different levels of temporal
abstraction (Sutton et al., 1998, 1999; Bacon et al.,
2017; Machado et al., 2023). Options belong to a class
of reinforcement learning (RL) approaches called hier-
archical RL, which involves decomposing a task into
subtasks at varying levels of granularity (Barto and
Mahadevan, 2003; Dietterich, 2000; Vezhnevets et al.,
2017; Co-Reyes et al., 2018; Eysenbach et al., 2019;
Hafner et al., 2022).

The key difference between the timing-as-an-action
framework and semi-MDPs or hierarchical RL is that
the latter frameworks generally assume that per-step
observations and rewards are available to the learner,
and subtasks are often accomplished with a combi-
nation of different granular actions. In contrast, our
work utilizes repeated actions (to reflect, e.g., a patient
following a treatment plan), and does not assume ac-
cess to per-step observations or rewards, but rather
the aggregated reward and final observation after the
chosen duration for the action has passed (e.g. when
the patient comes back for a follow-up visit). Semi-
MDP methods which rely on per-step rewards and
observations are thus not applicable.

Model-based RL has offered a sample-efficient approach
for settings where interactions may be expensive to col-
lect (Kaelbling et al., 1996; Deisenroth et al., 2011; Sut-

ton and Barto, 2018). Motivated by human cognition,
Ha and Schmidhuber (2018) proposed a model-based
framework that learns an autoencoder vision network
and recurrent neural memory network to represent the
environment dynamics. In a “dream” world simulated
by these learned networks, a small controller network is
trained. For continuous-time domains with irregularly
observed data, Du et al. (2020) use neural ordinary
differential equations for model-based reinforcement
learning in semi-Markov decision processes. However,
as far as we are aware, none of these setups assign a
cost to observing and acting, and proactively jointly
optimize for the next choice of delay and action.

Repetition of actions has been found to be useful for im-
proving exploration in simple classical RL environments
(Dabney et al., 2020) as well as gaming environments
such as Atari (Braylan et al., 2015) and VizDoom
(Khan et al., 2019), where skipping frames can lead to
improvements in learning speed and final performance.
Prior work on learning action repetitions has used a
Q-network with multiple output heads per action for
different repetition lengths (Lakshminarayanan et al.,
2017), a framework that jointly learns an action policy
and a second policy that decides how often to repeat
(Sharma et al., 2017), and using all pairs of intermediate
observations to learn the values of multi-step actions
(Biedenkapp et al., 2021). However, these works assume
access to intermediate observations and rewards.

4 METHODS

4.1 Timing-as-an-action Bellman Backup

To facilitate planning in the timing-as-an-action MDP,
we begin with defining the following timing-as-an-action
Bellman optimality equation, that recursively relates
the value function to itself. For any (s, a, k),

Q(s, a, k) = E[G(s, a, k)]

+ γkEs′∼P (·|s,a,k)[max
a′,k′

Q(s′, a′, k′)] (2)

Such recursive equations are the backbone of value-
based RL methods (Agarwal et al., 2019), that opti-
mize policies from learned value functions. In partic-
ular, finding a value function that satisfies (2) for all
(s, a, k) implies that we have obtained the optimal value
function Q∗ (see Appendix A.1 for proof).

Lemma 1. The timing-as-an-action Bellman optimal-
ity equation (2) has a unique fixed point for Q∗.

As Lemma 1 is analogous to well-established results for
value-based learning in standard MDPs, the immediate
implication is that one could solve the timing-as-an-
action RL problem by applying standard value-based
RL algorithms (e.g., Q-learning), with an expanded

Timing as an Action: Learning When to Observe and Act

action space equal to the cross product of actions and
delays A′ = A×K. Indeed, we will show that this is
the case in Section 4.2.1.

However, it should also be immediately clear that such
methods will be sample-inefficient because they do not
leverage the structure of the timing-as-an-action MDP,
namely, that observing k-step transitions also provides
information about the dynamics for k′ ̸= k. In general,
the sample complexity of RL algorithms depends on
the size of the action space (Azar et al., 2012; Agarwal
et al., 2019), here |A′| = |A||K|. This can grow rapidly
depending on the choice of delay space K, which, in
general, we expect to be relatively large as it represents
discretized time. For example, if one chose delays up
to one day with one-minute intervals between them,
the action space would be 1,440 times as large as the
single-timestep action space. Ideally, leveraging the
temporal nature of the timing action should result in
more efficient learning.

4.2 Learning Algorithms

We define three value-based RL algorithms based on
the timing-as-an-action Bellman backup (2). Two ap-
proaches, one model-free and one model-based, give a
naive treatment of the delay by treating it as any other
action, and can be viewed as standard RL algorithms
translated directly to the timing-as-an-action setup.
The third approach is also model-based, but leverages
the temporal nature of the delay, i.e, that Pa,k = Pk

a,1,
to share information between different values of delays.
As an extreme example, obtaining perfect 1-step tran-
sitions automatically translates to perfect estimation
of Pa,k for all k ∈ K; more generally, observations of
any delay allows for reasoning about the transitions
for other delays. Because the delay structure is em-
bedded in the transitions, model-based methods are a
natural choice for leveraging this structure (which is
not encoded in the Q-values).

4.2.1 Model-free

After taking action a for k steps from state s, the
environment returns an aggregated reward g and the
next state s′. The model-free approach updates the
action-values using the standard Q-learning update
(Watkins and Dayan, 1992):

Q̂(s, a, k)← g + γk max
a′,k′

Q̂(s′, a′, k′). (3)

Here the action space is simply the cross product of
all actions and delays (a, k) ∈ A × K, and a sample
of experience with delay k does not inform the values
associated with k − 1, k + 1, etc. To help improve
sample efficiency, we add experience replay, iterating
through tuples (s, a, k, g, s′) and updating using (3)

Algorithm 1 Model-free learning procedure

1: Input: MDP M , environment env to interact with
M , policy transformation πQ : Q→ ∆(A×K)S

2: Initialize replay buffer B = ∅ and Q-values
Q̂(s, a, k) = 0 ∀s, a, k ∈ S ×A×K.

3: for each episode do
4: s,done = env.reset(),False
5: while not done do
6: a, k ∼ πQ̂(·, ·|s)
7: s′, g, done = env.step(a, k)
8: Append B ← B ∪ {(s, a, k, s′, g)}
9: for (s, a, k, g, s′) ∈ B do

10: Update Q̂ via (3):

Q̂(s, a, k)← g + γk max
a′,k′

Q̂(s′, a′, k′).

11: end for
12: end while
13: end for

(details in Algorithm 1). To further improve sample
efficiency, we consider model-based methods.

4.2.2 Model-based

In the model-based approaches, we learn models of the
transition probabilities P̂ and one-step rewards R̂ using
a dataset of the form {(si, ai, ki, gi, s′i)}Ni=1, which are

then used to obtain the Q-value estimates Q̂.

For the timing-naive model-based approach, the transi-
tions are learned through maximum likelihood estima-
tion from the function class P:

P̂ = argmax
p∈P

N∑
i=1

log pai,ki
(s′i|si), (4)

where P = {P : S × A × K → ∆(S)} is the set of all
valid transitions (involving actions and delays). For
the timing-aware model-based approach,

P̂ = argmax
p∈P1

n∑
i=1

log
(
pki
ai,1

(s′i|si)
)
. (5)

where P1 = {p : pa,k(·|s) = [pa,1]
k(·|s),∀(s, a, k) ∈

S ×A×K}, recalling that p is the tensor version of p
thus [pa,1]

k is the S×S one-step transition probability
matrix multiplied by itself k times. Note that P1 ⊆ P
from (4), and the true transitions P ∈ P1 given the
structure the environment.

Then, given an estimate of the transition probabilities
P̂ (from either (4) or (5)), estimates of the one-step

reward function R̂ are obtained as follows:

R̂ = argmin
R′∈R

1

N

N∑
i=1

(GR′,P̂ (si, ai, ki)− gi)
2, (6)

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

Algorithm 2 Model-based learning procedure

1: Given: MDP M , policy transformation πQ : Q→
∆(A×K)S , P ′ = P in the timing-naive approach
and P ′ = P1} in the timing-naive approach.

2: Initialize replay buffer B = ∅, Q-values Q̂ = 0,
transitions P̂ , and one-step rewards r̂.

3: for each episode do
4: s,done = env.reset(),False
5: while not done do
6: a, k ∼ πQ(·, ·|s)
7: s′, g, done = env.step(a, k)
8: Append B ← B ∪ {(s, a, k, s′, g)}
9: for (s, a, k, g, s′) ∈ B do

10: Update P̂ using (4) (timing-naive):

P̂ = argmax
p∈P

n∑
i=1

log pai,ki
(s′i|si)

or (5) (timing-aware):

P̂ = argmax
p∈P

n∑
i=1

log
(
pki
ai,1

(s′i|si)
)
.

11: Update R̂ using (6). GR′,P ′ is defined in (7):

R̂ = argmin
R′∈R

1

N

N∑
i=1

(GR′,P̂ (si, ai, ki)− gi)
2.

12: Update Q̂← value iteration(P̂ ,GR̂,P̂).
13: end for
14: end while
15: end for

where R is a one-step reward function class and G is a
deterministic mapping from a one-step reward function
R′ and transition P ′ to the corresponding expected
aggregated multi-step reward,

GR′,P ′(s, a, k) = − C

+

k−1∑
τ=0

γτEs′∼P ′
a,k(·|s)[R

′(s′, a)]. (7)

Note that by plugging in the true R and P , we have
GR,P (s, a, k) = E[G(s, a, k)]. The P̂ and corresponding

R̂ are then used to learn the Q-value functions via
value iteration, i.e., by finding Q̂ that is the fixed point
of the Bellman equation involving the estimated GR̂,P̂

and P̂ below:

Q̂(s, a, k) = GR̂,P̂ (s, a, k)

+ γkEs′∼P̂a,k(·|s)[max
a′,k′

Q̂(s′, a′, k′)]. (8)

4.3 Analysis

To highlight the sample complexity improvements in
model learning achieved by (5), we provide our guar-
antees in the generative setting, which isolates the
estimation problem from the challenges of exploration
in RL (Azar et al., 2012; Agarwal et al., 2019):

Definition 1 (Generative Setting). A generative model
takes as input (s, a, k) and outputs s′ ∼ P (·|s, a, k). In
the generative setting, we obtain n samples of s′ from
each (s, a, k) ∈ S ×A×K using the generative model,
i.e. Ds,a,k = {(s, a, k, s′i)}ni=1.

Proofs for the below are provided in Appendix A.2,
in addition to the more general versions for the non-
generative setting:

Lemma 2. In the generative setting (Definition 1),

for P̂ from (4), with probability ≥ 1− δ,

max
s,a,k
∥P̂a,k(·|s)− Pa,k(·|s)∥1 ≲ S

√
AK log(1/δ)

n
.

Lemma 3. In the generative setting (Definition 1),

for P̂ from (5), with probability ≥ 1− δ,

max
s,a,k
∥P̂a,k(·|s)− Pa,k(·|s)∥1 ≲ S

√
A log(K/δ)

n
.

Comparison of the above transition estimation results
reveals the sample complexity gains from (5) are ob-
tained by leveraging the delay structure, as evidenced
by their respective dependencies on K. While the
timing-naive estimate has

√
K in its upper bound

(Lemma 2), the timing-smart estimate obtains logK
(Lemma 3), and this is because learning just the 1-step
transitions from all samples is more efficient, while still
being sufficient to express all k-step transitions.

Lemma 4. Fix P̂ and let εP̂ =

maxs,a,k

∥∥∥P̂ (·|s, a, k)− P (·|s, a, k)
∥∥∥
1
. Then in

the generative setting (Definition 1), with probability
≥ 1− δ we have∥∥∥GR̂,P̂ − GR,P

∥∥∥
∞

≲
1

(1− γ)
(SAK)

1/2
εP̂

+

(
G2

maxS
2A2K

n

)1/2

+

(
1

(1− γ)2
G2

maxS
2A2K

n
ε2
P̂

)1/4

where Gmax = max{C, | 1
1−γ − C|}.

Lemma 4 demonstrates that the error of aggregated
reward estimation is directly related to the error of
transition estimation through εP̂ ; better transition
estimation (smaller εP̂) translates to faster reward

convergence. For P̂ used in the timing-aware or timing-
naive model updates, εP̂ is given by the bounds in

Timing as an Action: Learning When to Observe and Act

Lemma 3 and Lemma 2, respectively, both of which are
n−1/2 thus endowing the RHS of Lemma 4 with a fast
n−1/2 rate of estimation, with GR̂,P̂ → GR,P as n→∞.

For example, Lemma 4 is Õ(SA3/4K1/2n−1/2) for the
timing-aware model-based approach in (5) since εP̂ =

Õ(SA1/2 logKn−1/2) from Lemma 3.1 The sample
complexity gains in timing-aware model estimation
thus translate to reward estimation as well.

As Q̂ is formed directly from P̂ and GR̂,P̂ in the model-

based update (8), the Q-value estimate directly inherits

the quality of the P̂ and GR̂,P̂ estimates. In other
words, the better the transition estimate, the better
Q̂ approximates Q∗, and the better the downstream
learned policy is. This is formalized below.

Proposition 1. For any P̂ and GR̂,P̂ , let Q̂ satisfy

(8). Let πQ̂ be the greedy policy with respect to Q̂, i.e.,

πQ̂(a, k|s) = 1[a = argmaxa′,k′ Q̂(s, a′, k′)]. Then

∥Q∗ −QπQ̂∥∞ ≤
2

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
2γ

(1− γ)2
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
.

5 EXPERIMENTS

Our experiments investigate the model estimation prob-
lem (Section 5.1) separately from the policy learning
problem (Section 5.2).

Implementation Details All models are implemented
using PyTorch, with transition probabilities P̂ initial-
ized uniformly, and single-step reward estimates R̂
initialized to −1. For the timing-aware model, the esti-
mate of the one-step transition matrix for action a is
P̂a,1 = softmax(T[a, :, :]), where T is an unconstrained
A× S × S parameter tensor initialized with ones, and
the softmax is over the last dimension. For the timing-
naive model, the estimate of the k-step transition ma-
trix for action a is P̂a,k = softmax(T′[a, k, :, :]), where
T′ is an unconstrained A×K×S×S parameter tensor
initialized with ones, and the softmax is over the last
dimension. The single-step rewards R̂ are initialized
as an A× S tensor, and estimates of the expected ag-
gregate reward are computed using ĝ = GR̂,P̂ (s, a, k),

defined in (7). Additional optimization details are in
Appendix B.

1While we obtain the desired logK dependence in our
timing-aware transition estimation bound, this becomes a
looser K1/2 factor in the reward estimation result, which
we believe is an artifact of the analysis that arises from
translating between norms. However, this inflation applies
to any plug-in transition estimation so our argument for
sample efficiency gains still applies.

0.0

0.5

1.0

1.5

P a
,1

(⋅|
s)

Delay sampled from
 k∈ = [1, 2, ..., 10]

Delay sampled from
 k= min() = 1

Delay sampled from
 k= max() = 10

0.0

0.5

1.0

1.5

P a
,5

(⋅|
s)

102 103 104

N
0.0

0.5

1.0

1.5

P a
,1

0(
⋅|s

)

102 103 104

N
Empirical Counts Timing-Naive Timing-Aware

102 103 104

N

M
ax

 L
1

Es
tim

at
io

n
Er

ro
r

Estimation error vs. # samples, for different sampling regimes

Figure 1: Maximum L1 estimation error
maxa,s ∥Pa,k(·|s)− P̂a,k(·|s)∥1 (with 95% CI) for P̂a,1,

P̂a,5, and P̂a,10 vs. N , the # of samples generated from
three sampling regimes: (a) the generative setting of
Definition 1, (b) only sampling k = min(K), and (c)
only sampling k = max(K).

5.1 Transition Model Estimation

As the likelihood objective in the timing-aware model-
based approach (5) may be non-convex in the one-step
parameters pa,1, we first verify empirically that stan-
dard gradient-based optimization methods can learn
P̂ ≈ P in Figure 3. To better compare the rates
of learning the transition probabilities in the timing-
aware and timing-naive approaches, we examine the
L1 error curves for three sampling regimes: (a) draw-
ing samples in the generative setting (Definition 1),
(b) drawing an equivalent number of samples select-
ing actions uniformly with just the minimum delay,
and (c) drawing an equivalent number of samples
selecting actions uniformly with just the maximum
delay. For (a), we draw n = [1, 2, 5, 10, 20, 50, 100]
per-(s, a, k) samples ∀(s, a, k) ∈ S × A × K, giving
N = nSAK = [60, 120, ..., 6000] samples to estimate

P̂ . For (b) and (c) which sample just one value of
k, we draw ten times as many per-(s, a, k) samples to
obtain the same number of samples N . True transition
probabilities P come from the disease progression en-
vironment, where S = 3, A = 2, and K = 10. We also
sanity-check against the estimate of P from empirically
counting transitions to each state given each state and
action. Results are averaged over 30 trials.

When all delays are sampled, the timing-aware model-
based approach achieves lower estimation error faster
than the timing-naive model-based approach and em-
pirical counts. In the generative setting (Definition 1),
for example, it only takes the timing-aware approach
n = 20 draws of all (s, a, k) ∈ S × A × K to achieve

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

 states:
 healthy unhealthy dead

 actions:
 treat don’t treat

Disease Progression

 states:
 blood glucose
 70ー80 mg/dL,
 80ー90, …,
 340ー350, out of range
 actions:
 insulin amount
 0, 10, 20, 30, 40

Glucose

 states:

 actions:

Windy Grid

Figure 2: Summary of disease, glucose, and windy grid environments. Additional details in Appendix C.

Table 1: Final average cumulative reward after 200 episodes. Values are written in the hundreds.

Disease Progression Windy Grid Glucose

Timing-Aware 4.26 (4.00–4.53) 81.5 (80.3–82.6) 0.420 (0.287–0.554)
Timing-Naive 4.24 (4.00–4.47) 76.9 (75.0–78.8) 0.334 (0.224–0.443)
Model-Free 3.47 (3.28–3.65) 3.96 (1.83–6.10) 0.270 (0.183–0.356)

a maximum L1 error less than 0.1 in the estimate of
the one-step transition probabilities, whereas it takes
timing-naive approach more than n = 100 per-(s, a, k)
draws to achieve the same. While in the timing-naive
approach each sample only contributes information to-
wards the corresponding entry with the same delay,
in the timing-aware approach each sample contributes
to the estimates of transition probabilities of all other
delays. This is further demonstrated in the second and
third columns of Figure 3, where when only one delay
is sampled, the timing-naive approach only improves
its estimate with samples of the same delay, and the
estimates for the other delays remain unchanged.

5.2 Reinforcement Learning Setting

For πQ̂, we use an ϵ-greedy policy with ϵ = 0.1,
where with probability 1 − ϵ the delay and action
are argmaxa′,k′ Q̂(s, a′, k′), and otherwise the delay
is k = 1 and the action is drawn uniformly from A.
Each experiment has 200 episodes (limited to mimic
real-world situations with limited data), and 50 trials
of each experiment are run. We explore three environ-
ments of increasing size of state and action space: (1) a
three-state disease progression simulator, (2) a glucose
simulator, and (3) a windygrid environment (Figure
2). We implement an augmented version of all three
simulators which accepts both the action a and delay k,
and returns the aggregated rewards g and state s′ after
having taken k steps with action a (see box in Section
2). Code for these simulators is in the supplement.

Progression Environment This simulator is an en-
vironment with three states (healthy, unhealthy, dead)
and two actions (treat and do not treat). We consider
delays of up to ten timesteps, k ∈ K = [1, 2, ..., 10]. The

simulator is based on models commonly used in disease
progression modeling, such as multi-state Markov mod-
els used in breast cancer progression modeling (Yen
et al., 2003; Olsen et al., 2006; Chen et al., 1996; Duffy
et al., 1995). The true transition probabilities P are in-
cluded in Appendix C. The healthy state has a reward
of 25, the unhealthy state has a reward of 5, and the
dead state terminates the episode and has as reward
of 0. The action cost is C = 5, and γ = 0.99.

Glucose Environment We implement an augmented
version of the SimGlucose simulator (Xie, 2018), with
29 states corresponding to ranges of blood glucose mea-
surements, and five actions corresponding to different
insulin amounts. We consider delays K = [1, 2, 3, 4].
The reward and transition probabilities are not defined
explicitly, but rather according to dynamics in Clarke
and Kovatchev (2009); Xie (2018); Man et al. (2014).
The action cost is C = 0.5, and γ = 0.99.

Windy Grid Environment The windy grid simulator
is a classic RL environment (Sutton and Barto, 2018),
consisting of a 7 × 10 grid with 70 states, and four
actions (up, down, left, right). We consider a delay
space K = [1, 2, ..., 10]. The agent starts at (3, 0), and
the goal state is at (3, 7). With probability 0.5, wind
(columns 4–6 and 9) pushes the agent up one space,
and strong wind (columns 7 and 8) pushes the agent
up two spaces. Except for states with wind, the actions
produce the expected transition to adjacent states with
probability 1. In row 3, columns 5 and 6 have hazards
which have a negative reward, -5. The goal state has
a reward of 10,000, and the remaining states have a
reward of -1. Upon reaching the goal state, the episode
terminates. The action cost is C = 1, and γ = 0.99.

RL Results Across episodes, the timing-aware ap-

Timing as an Action: Learning When to Observe and Act

0 100 200

3.5

4.0

4.5

Av
g.

 C
um

ul
at

iv
e

 R
ew

ar
d

1e2 disease

0 100 200
0.0

2.5

5.0

7.5
1e3 windygrid

0 100 200
Episodes

30

40

50
glucose

Model-Free
Timing-Naive
Timing-Aware

0 100 200
Episodes

0.2

0.4

M
ea

n
L1

 E

st
im

at
io

n
Er

ro
r

0 100 200
Episodes

1.0

1.5

Figure 3: Average cumulative reward and mean L1
error (∥P̂a,k(·|s)− Pa,k(·|s)∥1 averaged over all s, a, k)
across 50 trials, smoothed with a running average over
20 episodes. Shaded regions are the standard errors.

0 100 200
2

3

4

5

Av
g.

 C
um

ul
at

iv
e

 R
ew

ar
d

1e2 disease

0 100 200
0.0
2.5
5.0
7.5

1e3 windygrid

0 100 200
Episodes

20

40

glucose

exploration
no exploration

0 100 200
Episodes

0.0

0.2

0.4

M
ea

n
L1

 E
st

. E
rro

r

0 100 200
Episodes

0.5

1.0

1.5

Timing-Aware Performance with and without Exploration Phase

Figure 4: Avg. cumulative reward and mean L1 error
for timing-aware with/without exploration phase.

proach achieves the highest cumulative reward in all en-
vironments (Table 1 and Figure 2, top). In the disease
progression environment it only achieves slightly higher
cumulative reward than the timing-naive approach,
but achieves it quicker with fewer episodes. In the
windy grid and glucose environments, the timing-aware
approach significantly outperforms the timing-naive
approach. In all cases, the model-based approaches
outperform the model-free approach. In the disease
progression and windy grid environments (where we
have access to the true P for evaluation purposes), the
timing-aware approach is able to obtain significantly
lower estimation error maxs,a,k ∥Pa,k(·|s)− P̂a,k(·|s)∥1
than the timing-naive approach (Figure 2, bottom).

We also experiment with adding an exploration phase
of 50 episodes, where actions are taken uniformly at
random in the exploration phase before reverting to
the ϵ-greedy policy. This approach does decrease the
estimation error more quickly (Figure 4 second row),
however depending on the environment, it has an in-
consistent effect on the resulting cumulative reward.
In the windy grid environment, we observe that while
the exploration phase improves transition estimation,
this does not necessarily translate to a higher return.

It can even worse performance when purely random
exploration causes early termination, as in the glucose
environment. On the other hand, it can also result in
improved transition estimation and higher reward, as
seen in the disease progression environment.

In the disease simulator, all methods execute the “don’t
treat” action more frequently (assigns higher proba-
bilities to staying in the same state) rather than the
“treat” action (encourages switching between states)
(Appendix Figure 6). The learned policies align with
clinical intuition, learning not to treat in the healthy
state, and to treat in the unhealthy state. Once the
agent is in a healthy state, it is incentivized to remain
there as long as possible. The timing-aware method
often takes the largest delay (10 timesteps), whereas
the timing-naive method executes intermediate delays
more frequently, and the model-free methods execute
much shorter delays.

In the glucose simulator, timing-aware most frequently
administers the second lowest amount of insulin for the
largest delay (4 timesteps) (Appendix Figure 6). By
contrast, the timing-naive method administers a greater
variety of quantities of insulin, and does so for an in-
termediate number of timesteps, most frequently ad-
ministering for two timesteps. The model-free method
utilizes all actions and delays more uniformly. These
policies align with the clinical intuition that one should
avoid administering large doses for extended periods
of time.

In the windy grid simulator, all methods tend to utilize
shorter delays closer to the goal state, where wind
pushes the agent up one or two squares with probability
0.5 (Appendix Figure 7). Along the first and last rows
(rows 0 and 9) of the grid, the timing-aware policy
learns to repeat the move right action just long enough
to get in the vicinity of the goal. Since there is wind
pushing the agent upward in columns 7 and 8, along the
top half of the grid the agent learns to go to column 9
first (where there is no wind), and then walk downward
to the same row as the goal state before walking left.
The optimal policy more closely resembles the timing-
aware approach than the timing-naive approach.

6 DISCUSSION

The timing-as-an-action problem setting poses interest-
ing theoretical and practical challenges for bringing re-
inforcement learning into real-world settings where op-
portunities to observe and act can be costly. We demon-
strate that the timing-aware model-based method lever-
ages the structure of the timing-as-an-action environ-
ment to obtain sample complexity advantages over
either model-free (corresponding to standard value-
based RL methods translated to our setting) or the

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

timing-naive model-based method. This aligns with
intuition, as the timing-naive method must learn SAK
parameters for P̂ whereas the timing-aware method
only needs to learn SA parameters for P̂ .

We demonstrate empirically that estimation using the
timing-aware approach is more sample-efficient than
the timing-naive approach (Figure 3). Additionally, the
timing-aware approach updates its estimates for tran-
sition probabilities of delay actions other than those
which were sampled (middle and right columns of Fig-
ure 3), whereas the timing-naive approach does not.

In all RL experiments, the timing-aware approach
achieves the highest or ties for the highest average
cumulative reward (Table 1). We note that these re-
sults are after 200 episodes, and it is likely that with
more episodes the other methods would eventually
do as well as the timing-aware approach. In the dis-
ease progression and windy grid RL settings, timing-
naive has substantially higher estimation error than
timing-aware, however the resulting policy is still able
substantially outperform the model-free approach and
obtain performance comparable or almost comparable
to timing-aware, indicating that the learned policy can
still perform well even if P̂ is inaccurate (Figure 2).
Similarly, although an exploration phase helps improve
the estimation error (Figure 4), the cumulative reward
may not necessarily improve. Although our results use
the same exploration strategy across all settings, future
works may find it beneficial in some settings to have
an exploration phase for the first few episodes in order
to quickly learn P̂ .

Acknowledgements

We gratefully acknowledge the NSF (FAI 2040929 and
IIS2211955), UPMC, Highmark Health, Abridge, Ford
Research, Mozilla, the PwC Center, Amazon AI, JP
Morgan Chase, the Block Center, the Center for Ma-
chine Learning and Health, and the CMU Software
Engineering Institute (SEI) via Department of Defense
contract FA8702-15-D-0002, for their generous support
of ACMI Lab’s research.

References

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W.
(2019). Reinforcement learning: Theory and algo-
rithms. CS Dept., UW Seattle, Seattle, WA, USA,
Tech. Rep, 32.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun,
W. (2020). Flambe: Structural complexity and rep-
resentation learning of low rank mdps. Advances
in neural information processing systems, 33:20095–
20107.

Azar, M. G., Munos, R., and Kappen, B. (2012). On

the sample complexity of reinforcement learning with
a generative model. arXiv preprint arXiv:1206.6461.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The
option-critic architecture. In Proceedings of the
AAAI conference on artificial intelligence, volume 31.

Barto, A. G. and Mahadevan, S. (2003). Recent ad-
vances in hierarchical reinforcement learning. Dis-
crete event dynamic systems, 13(1-2):41–77.

Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer,
M. (2021). Temporl: Learning when to act. In In-
ternational Conference on Machine Learning, pages
914–924. PMLR.

Braylan, A., Hollenbeck, M., Meyerson, E., and Mi-
ikkulainen, R. (2015). Frame skip is a powerful
parameter for learning to play atari. In Workshops
at the twenty-ninth AAAI conference on artificial
intelligence.

Chen, H.-H., Duffy, S. W., and Tabar, L. (1996). A
markov chain method to estimate the tumour progres-
sion rate from preclinical to clinical phase, sensitivity
and positive predictive value for mammography in
breast cancer screening. Journal of the Royal Statisti-
cal Society Series D: The Statistician, 45(3):307–317.

Cheung, L. C., Albert, P. S., Das, S., and Cook, R. J.
(2022). Multistate models for the natural history
of cancer progression. British Journal of Cancer,
127(7):1279–1288.

Clarke, W. and Kovatchev, B. (2009). Statistical tools
to analyze continuous glucose monitor data. Diabetes
technology & therapeutics, 11(S1):S–45.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B.,
Abbeel, P., and Levine, S. (2018). Self-consistent
trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings. In Dy, J. and
Krause, A., editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
1009–1018. PMLR.

Dabney, W., Ostrovski, G., and Barreto, A. (2020).
Temporally-extended {\epsilon}-greedy exploration.
arXiv preprint arXiv:2006.01782.

Deisenroth, M. P., Rasmussen, C. E., and Fox, D.
(2011). Learning to control a low-cost manipulator
using data-efficient reinforcement learning. Robotics:
Science and Systems VII, 7:57–64.

Dietterich, T. G. (2000). Hierarchical reinforcement
learning with the maxq value function decomposition.
Journal of artificial intelligence research, 13:227–303.

Du, J., Futoma, J., and Doshi-Velez, F. (2020). Model-
based reinforcement learning for semi-markov deci-
sion processes with neural odes. Advances in Neural
Information Processing Systems, 33:19805–19816.

Timing as an Action: Learning When to Observe and Act

Duffy, S. W., Chen, H.-H., Tabar, L., and Day, N. E.
(1995). Estimation of mean sojourn time in breast
cancer screening using a markov chain model of both
entry to and exit from the preclinical detectable
phase. Statistics in medicine, 14(14):1531–1543.

Esserman, L. J. (2017). The wisdom study: breaking
the deadlock in the breast cancer screening debate.
NPJ breast cancer, 3(1):34.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S.
(2019). Search on the replay buffer: Bridging plan-
ning and reinforcement learning. Advances in Neural
Information Processing Systems, 32.

Ha, D. and Schmidhuber, J. (2018). World models.
arXiv preprint arXiv:1803.10122.

Hafner, D., Lee, K.-H., Fischer, I., and Abbeel, P.
(2022). Deep hierarchical planning from pixels. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A., editors, Advances in Neural
Information Processing Systems, volume 35, pages
26091–26104. Curran Associates, Inc.

Huang, A., Chen, J., and Jiang, N. (2023). Reinforce-
ment learning in low-rank mdps with density features.
arXiv preprint arXiv:2302.02252.

Jackson, C. (2011). Multi-state models for panel data:
the msm package for r. Journal of statistical software,
38:1–28.

Kaelbling, L. P., Littman, M. L., and Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285.

Khan, A., Feng, J., Liu, S., Asghar, M. Z., et al. (2019).
Optimal skipping rates: training agents with fine-
grained control using deep reinforcement learning.
Journal of Robotics, 2019.

Lakshminarayanan, A., Sharma, S., and Ravindran,
B. (2017). Dynamic action repetition for deep re-
inforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31.

Lindbohm, J. V., Sipilä, P. N., Mars, N. J., Pentti, J.,
Ahmadi-Abhari, S., Brunner, E. J., Shipley, M. J.,
Singh-Manoux, A., Tabak, A. G., and Kivimäki, M.
(2019). 5-year versus risk-category-specific screening
intervals for cardiovascular disease prevention: a
cohort study. The Lancet Public Health, 4(4):e189–
e199.

Liu, Q., Chung, A., Szepesvári, C., and Jin, C. (2022).
When is partially observable reinforcement learning
not scary? In Conference on Learning Theory, pages
5175–5220. PMLR.

Liu, Q., Netrapalli, P., Szepesvari, C., and Jin, C.
(2023). Optimistic mle: A generic model-based al-
gorithm for partially observable sequential decision

making. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 363–376.

Lorenzi, M., Filippone, M., Frisoni, G. B., Alexander,
D. C., and Ourselin, S. (2019). Probabilistic disease
progression modeling to characterize diagnostic un-
certainty: Application to staging and prediction in
alzheimer’s disease. NeuroImage, 190:56–68. Map-
ping diseased brains.

Machado, M. C., Barreto, A., Precup, D., and Bowling,
M. (2023). Temporal abstraction in reinforcement
learning with the successor representation. Journal
of Machine Learning Research, 24(80):1–69.

Man, C. D., Micheletto, F., Lv, D., Breton, M., Ko-
vatchev, B., and Cobelli, C. (2014). The uva/padova
type 1 diabetes simulator: new features. Journal of
diabetes science and technology, 8(1):26–34.

Mankiw, N. G. and Reis, R. (2002). Sticky information
versus sticky prices: a proposal to replace the new
keynesian phillips curve. The Quarterly Journal of
Economics, 117(4):1295–1328.

Marmot, M. G., Altman, D., Cameron, D., Dewar, J.,
Thompson, S., and Wilcox, M. (2013). The benefits
and harms of breast cancer screening: an indepen-
dent review. British journal of cancer, 108(11):2205–
2240.

Olsen, A. H., Agbaje, O. F., Myles, J. P., Lynge, E., and
Duffy, S. W. (2006). Overdiagnosis, sojourn time,
and sensitivity in the copenhagen mammography
screening program. The Breast Journal, 12(4):338–
342.

Ren, W., Chen, M., Qiao, Y., and Zhao, F. (2022).
Global guidelines for breast cancer screening: a sys-
tematic review. The Breast, 64:85–99.

Sharma, S., Srinivas, A., and Ravindran, B. (2017).
Learning to repeat: Fine grained action repetition
for deep reinforcement learning. arXiv preprint
arXiv:1702.06054.

Stokey, N. L. (2008). The Economics of Inaction:
Stochastic Control models with fixed costs. Princeton
University Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Sutton, R. S., Precup, D., and Singh, S. (1998). Intra-
option learning about temporally abstract actions.
In ICML, volume 98, pages 556–564.

Sutton, R. S., Precup, D., and Singh, S. (1999). Be-
tween mdps and semi-mdps: A framework for tempo-
ral abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess,
N., Jaderberg, M., Silver, D., and Kavukcuoglu, K.

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

(2017). Feudal networks for hierarchical reinforce-
ment learning. In International Conference on Ma-
chine Learning, pages 3540–3549. PMLR.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Ma-
chine learning, 8:279–292.

Xie, J. (2018). Simglucose v0.2.1.

Yen, M.-F., Tabar, L., Vitak, B., Smith, R., Chen,
H.-H., and Duffy, S. (2003). Quantifying the poten-
tial problem of overdiagnosis of ductal carcinoma in
situ in breast cancer screening. European journal of
cancer, 39(12):1746–1754.

Young, A. L., Bragman, F. J., Rangelov, B., Han,
M. K., Galbán, C. J., Lynch, D. A., Hawkes, D. J.,
Alexander, D. C., and Hurst, J. R. (2020). Dis-
ease progression modeling in chronic obstructive pul-
monary disease. American journal of respiratory and
critical care medicine, 201(3):294–302.

Timing as an Action: Learning When to Observe and Act

A Proofs for Section 4

A.1 Proof of Lemma 1

Proof. Let us show that the Bellman backup operator H described in (2) is a contraction mapping in the finite
space (R, L∞).

(Hq)(s, a, k) =
∑
s′∈S

Pa,k(s
′|s)

[
E[G(s, a, k)] + γk max

a′,k′
q(s′, a′, k′)

]
||Hq1 −Hq2||∞

= max
s,a,k

∣∣∣∣∣∑
s′∈S

Pa,k(s
′|s)

[
E[G(s, a, k)] + γk max

a′,k′
q1(s

′, a′, k′)− E[G(s, a, k)]− γk max
a′,k′

q2(s
′, a′, k′)

]∣∣∣∣∣
= max

s,a,k

∣∣∣∣∣∑
s′∈S

Pa,k(s
′|s)

[
γk(max

a′,k′
q1(s

′, a′, k′)−max
a′,k′

q2(s
′, a′, k′))

]∣∣∣∣∣
≤ max

s,a,k
γk
∑
s′∈S

Pa,k(s
′|s)

∣∣∣∣max
a′,k′

q1(s
′, a′, k′)−max

a′,k′
q2(s

′, a′, k′)

∣∣∣∣
≤ max

s,a,k
γk
∑
s′∈S

Pa,k(s
′|s)max

a′,k′
|q1(s′, a′, k′)− q2(s

′, a′, k′)|

= max
s,a,k

γk
∑
s′∈S

Pa,k(s
′|s)||q1 − q2||∞

= γk||q1 − q2||∞
≤ γ||q1 − q2||∞

where the last line follows from the fact that k ≥ 1. Thus, the operator H is a contraction. Hence, by the Banach
fixed point theorem, there exists a unique optimal Q∗.

A.2 Proofs for Lemma 2 and Lemma 3

First we prove Lemma 3. Applying Lemma 5 to {Di}Ni=1 drawn as in the generative setting (Definition 1), the
LHS becomes

N∑
i=1

E(s,a,k)∼Di

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
= n

∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1

and we have the bound that with probability at least 1− δ,

∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
≤ 12 log(|P1|/δ)

n
+ 6ϵSAK + ϵ2SAK

Then choosing ϵ = 1/nSAK, Lemma 8 states that |P1| has cardinality ≤ (nS2AK2)S
2A, thus

∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
≤ 12S2A log(S2AK2n/δ)

n
+

6

n
+

1

SAKn2
,

which implies that (suppressing log factors)

max
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥
1
≲ S

√
A log(K/δ)

n

The proof of Lemma 2 proceeds similarly but with |P| ≤ (nS2AK)S
2AK from Lemma 8.

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

Maximum likelihood estimation We state and prove a general MLE guarantee for conditional probability
estimation. This section is takes inspiration from the results in Agarwal et al. (2020); Liu et al. (2022, 2023);
Huang et al. (2023). We consider the problem of estimating the conditional density f∗(y|x), for all x ∈ X (the
input space) and y ∈ Y (the target space). We are given a function class F : X ×Y → R, and suppose f∗ ∈ F . In
addition, we have an adaptive dataset D = {(xi, yi)}Ni=1 where xi ∼ Di(x<i, y<i), and yi ∼ f∗(·|xi). We output

f̂ = argmaxf∈F
∑n

i=1 log f(yi|xi). Note that this is analogous to the model-based estimation in (5) and (4) with
function classes P1 and P, respectively, and X = S ×A×K and Y = S.

We allow F to be an infinite function class, and the MLE bound will depend on the statistical complexity of the
function class F , which is quantified using the ℓ1 optimistic cover, defined below:

Definition 2 (ℓ1 optimistic cover). For a function class F ⊆ (X → R), we call function class F an ℓ∞ optimistic
cover of F with scale ϵ, if for any f ∈ F there exists f ∈ F , such that maxx∈X ∥f(·|x) − f(·|x)∥1 ≤ ϵ and
f(y|x) ≤ f(y|x), ∀x ∈ X , y ∈ Y.

The formal bound for MLE estimation is stated below:

Lemma 5 (MLE guarantee). Suppose F satisfies: (i) f∗ ∈ F , (ii) each function f ∈ F is a valid probability
distribution over Y given x (i.e., f(·|x) ∈ ∆(Y) for all x ∈ X), and (iii) F has a finite ℓ1 optimistic cover

(Definition 2) F with scale ϵ and F ⊆ (X → R≥0). Then with probability at least 1− δ, the MLE solution f̂ has
an ℓ1 error guarantee

N∑
i=1

Exi∼Di

∥∥∥f̂(·|xi)− f∗(·|xi)
∥∥∥2
1
≤ 12 log(|F|/δ) + 6ϵN + ϵ2N

Proof of Lemma 5. First, define

L(f,D) = 1

2

N∑
i=1

log

(
f(yi|xi)

f∗(yi|xi)

)
.

Next, we decouple the dependencies between samples, and state the following result from Agarwal et al. (2020)
without proof:

Lemma 6 (Lemma 24 of Agarwal et al. (2020)). Let D be a dataset of N examples, and let D′ be a tangent
sequence. A tangent sequence {(x′

i, y
′
i)}Ni=1 is sampled as x′

i ∼ Di(x1:i−1, y1:i−1) and y′i ∼ f∗(·|x′
i), which is

independent conditioned on D. Let L(f,D) = 1
N

∑N
i=1 l(f, (xi, yi)) be any function that decomposes additively

across examples, where l is any function, and let f(D) be any estimator taking as input the random variable D
and with range F . Then

ED [exp (L(f(D),D)− logED′ exp(L(f(D),D′))− log |F|)] ≤ 1.

Using Chernoff’s method with union bound over F , with probability at least 1− δ we have for any f ∈ F that

− logED′ exp (L(f(D),D′)) ≤ −L(f(D),D) + log(|F|/δ)

Now let f ∈ F be the ϵ-close ℓ1 optimistic approximator of the MLE solution f̂ ∈ F . Applying the above to f , in
the RHS we have

−L(f(D),D) = 1

2

N∑
i=1

log
f∗(yi|xi)

f(yi|xi)

≤ 1

2

N∑
i=1

log
f∗(yi|xi)

f̂(yi|xi)
(f is optimistic cover)

=
1

2

(
N∑
i=1

log f∗(yi|xi)−
N∑
i=1

log f̂(yi|xi)

)
≤ 0 (f̂ optimal)

Timing as an Action: Learning When to Observe and Act

Combining inequalities, we have

log(|F|/δ) ≥ − logED′ exp
(
L(f(D),D′)

)
= − logED′

[
exp

(
1

2

N∑
i=1

log

(
f(y′i|x′

i)

f∗(y′i|x′
i)

))
|D

]

= −
N∑
i=1

logEx∼Di,y∼f∗(·|xi)

√ f(y|x)
f∗(y|x)

 (9)

Next, we show that for any D, we have

Ex∼D
∥∥f(·|x)− f∗(·|x)

∥∥2
1
≤ −12 logEx∼D,y∼f∗(·|x)

√ f(y|x)
f∗(y|x)

+ 6ϵ (10)

Combining (9) and (10), we have

N∑
i=1

Ex∼Di

∥∥f(·|x)− f∗(·|x)
∥∥2
1
≤ 12 log(|F|/δ) + 6ϵN (11)

Finally, using the triangle inequality, we have

N∑
i=1

Ex∼Di

∥∥∥f̂(·|x)− f∗(·|x)
∥∥∥2
1
≤

N∑
i=1

Ex∼Di

∥∥∥f̂(·|x)− f(·|x)
∥∥∥2
1
+

N∑
i=1

Ex∼Di

∥∥f(·|x)− f∗(·|x)
∥∥2
1

≤ ϵ2N + 12 log(|F|/δ) + 6ϵN

Lemma 7 (Optimistic cover for P). For the function class P (from (4)) there exists an ℓ1 optimistic cover

(Definition 2) with scale ϵ of size
(
⌈Sϵ ⌉

)S2AK
.

Lemma 8 (Optimistic cover for P1). For the function class P1 (from (5)) there exists an ℓ1 optimistic cover

(Definition 2) with scale ϵ of size
(
⌈KS

ϵ ⌉
)S2A

.

Proof of Lemma 7. Denote P = {Pk}k∈[K], where Pk denotes the model class for the k-step transitions, and we

will construct P = {Pk}k∈[K] its optimistic covering set. For any P ∈ Pk, set its optimistic covering function

to be P (s′|s, a, k) = ϵ′⌈P (s′|s,a,k)
ϵ′ ⌉ and include this P in Pk. Clearly for any (s, a, k, s′) we have P (s′|s, a, k) ≥

P (s′|s, a, k), and ∥P (·|s, a, k)− P (·|s, a, k)∥1 ≤ ϵ′|S| so we need to set ϵ′ = ϵ/|S|. Then |P| ≤
(
⌈ |S|

ϵ ⌉
)S2AK

.

Proof of Lemma 8. For any P, P ′ ∈ P1 and k ∈ [K],∥∥Pa,k(·|s)− P ′
a,k(·|s)

∥∥
1
=
∥∥P k

a,1(·|s)− (P ′
a,1)

k(·|s)
∥∥
1
≤ |S|k sup

s

∥∥Pa,1(·|s)− P ′
a,1(·|s)

∥∥
1

Let P ′
1 = {P : S × A → ∆(S)} to be the set of all valid one-step transitions. Then it suffices to first find a

cover P ′
1 of P ′

1 using a grid of size ϵ
|S|K , then set the cover of P1 to be P = {[(P a,1)

k]a∈A,k∈K : P ∈ P ′
1}. Then

|P| ≤
(
⌈K|S|

ϵ ⌉
)S2A

.

A.3 Proof of Lemma 4

We treat P̂ as independent of Ĝ in this section, which can be accomplished by splitting the samples N into two
folds, one for P̂ estimation, and one for Ĝ estimation, which dilutes the final bound by only a small constant
factor without changing the dependencies, and we discuss this at the end of this section.

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

Let (si, ai, ki) ∼ µ independently. For a fixed P̂ , rewrite the regression as

Ĝ = argmin
f∈FP̂

1

N

N∑
i=1

(f(si, ai, ki)− gi)
2

where FP̂ = {GR′,P̂ : R′ ∈ [0, 1]SA} is the set of aggregated rewards induced by P̂ and any valid one-step reward

function. We will bound the error
∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

, starting with the decomposition∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

− ∥GR,P − g∥22,µ×G

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

+
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

− ∥GR,P − g∥22,µ×G

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G︸ ︷︷ ︸

T1

+
∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ︸ ︷︷ ︸

T2

We can bound T2 as follows:∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ
≤ 1

(1− γ)2
max
s,a,k

∥∥∥P̂ (·|s, a, k)− P (·|s, a, k)
∥∥∥2
1
:=

1

(1− γ)2
εP (12)

We have the following bound for T1 from Lemma 9:∥∥∥Ĝ− g
∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N

Then combining (12) and Lemma 9, we have∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N
+
∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

≤ 1

1− γ

√
SAG2

max log(1/δ
′)

N
εP +

SAG2
max log(1/δ

′)

N
+

1

(1− γ)2
εP

Finally, to translate the above inequality to the ℓ∞ guarantee of Lemma 4 in the generative setting (Definition 1),∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

=
1

SAK

∑
s,a,k

(
Ĝ(s, a, k)− GR,P (s, a, k)

)2
≥ 1

SAK
max
s,a,k

(
Ĝ(s, a, k)− GR,P (s, a, k)

)2
Combining the above two inequalities and rearranging gives the result.

Bounds for timing-aware model-based and timing-naive model-based methods We briefly discuss the
bound for timing-aware model-based, and the bound for timing-naive model-based follows the same argument.
Due to sample splitting, we call the results in Lemma 3 and Lemma 4 with 1

2N samples and δ′ = 1
2δ, then union

bound over the two results. For timing-smart, we have εP ≲ S2A log(K/δ)
n .

Lemma 9. Let R̂ be the output of (6) with transition P̂ , and define Ĝ = GR̂,P̂ . With probability at least 1− δ′

we have∥∥∥GR̂,P̂ − g
∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N

Proof of Lemma 9. For any f , define the empirical loss LD(f) and its expectation Lµ(f), respectively, as

LD(f) :=
1

N

N∑
i=1

(f(si, ai, ki)− gi)
2

Lµ(f) := E(s,a,k)∼µ,g∼G(s,a,k)

[
(f(s, a, k)− g)2

]
.

Timing as an Action: Learning When to Observe and Act

Let F P̂ be an ℓ∞ covering of FP̂ with scale ϵ, in other words, for any f ∈ FP̂ there exists f ∈ F P̂ such that

|f(s, a, k) − f(s, a, k)| ≤ ϵ for any (s, a, k). Lemma 10 shows that such a covering exists and has cardinality

|F P̂ | = (⌈1/(1− γ)ϵ⌉)SA
. For any f ∈ F P̂ , for a random (s, a, k, g) ∼ µ×G, define

Z(f) := (f(s, a, k)− g)
2 −

(
GR,P̂ (s, a, k)− g

)2
and let Zi(f) be the corresponding variable for each (si, ai, ki, gi) ∈ Di. Observe that LD(f) − LD(GR,P̂) =
1
N

∑N
i=1 Zi(f). Applying Bernstein’s inequality with union bound over F P̂ , with probability ≥ 1 − δ we have

that for any f ∈ F P̂ ,

E[Z(f)]− 1

N

N∑
i=1

Zi(f) ≤

√
2V[Z(f)] log

|FP̂ |
δ

N
+

8G2
max log

|FP̂ |
δ

3N
(13)

For any f ∈ F P̂ , we can upper bound V[Z(f)] as follows (with the constant Gmax such that g ∈ [−Gmax, Gmax]):

Vµ×P [Z(f)] ≤ Eµ×G[Z(f)2]

= Eµ×G

[(
(f(s, a, k)− g)

2 −
(
GR,P̂ (s, a, k)− g

)2)2
]

= Eµ×G

[(
f(s, a, k)− GR,P̂ (s, a, k)

)2 (
f(s, a, k) + GR,P̂ (s, a, k)− 2g

)2]
≤ 16G2

maxEµ

[(
f(s, a, k)− GR,P̂ (s, a, k)

)2]
= 16G2

max

∥∥∥f − GR,P̂

∥∥∥2
2,µ

Further,

∥∥∥f − GR,P̂

∥∥∥2
2,µ
≤ 2

(
∥f − GR,P ∥22,µ +

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
∥f − GR,P ∥22,µ −

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+ 2
∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
Lµ(f)− Lµ(GR,P)−

(
Lµ(GR,P̂)− Lµ(GR,P)

)
+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
Lµ(f)− Lµ(GR,P̂) + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
To summarize the above series of inequalities, we have upper bounded the variance as:

Vµ×P [Z(f)] ≤ 32G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
(14)

Plugging this back into (13), with probability ≥ 1− δ for any f ∈ F P̂ we have

E[Z(f)]− 1

N

N∑
i=1

Zi(f) ≤

√√√√√64G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F P̂ |
δ

N
+

8G2
max log

|F P̂ |
δ

3N
(15)

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

Now let f̂ = GR̂,P̂ ∈ FP̂ , and let f be its covering function. Then for any (s, a, k, g),

∣∣∣Z(f)− Z(f̂)
∣∣∣ = ∣∣∣∣(f(s, a, k)− g

)2 − (f̂(s, a, k)− g
)2∣∣∣∣

=
∣∣∣(f(s, a, k)− f̂(s, a, k)

)(
f(s, a, k) + f̂(s, a, k)− 2g

)∣∣∣
≤ 4Gmax

∥∥∥f − f̂
∥∥∥
∞

≤ 4Gmaxϵ

since F P̂ is an ℓ∞ cover of scale ϵ. By extension,
∣∣∣E[Z(f)]− E[Z(f̂)]

∣∣∣ ≤ ϵ, and same for its empirical approximation.

Then

E[Z(f̂)]− 1

N

N∑
i=1

Zi(f̂) = E[Z(f)]− 1

N

N∑
i=1

Zi(f) +
(
E[Z(f̂)]− E[Z(f)]

)
+

(
1

N

N∑
i=1

Zi(f)−
1

N

N∑
i=1

Zi(f̂)

)

≤ E[Z(f)]− 1

N

N∑
i=1

Zi(f) + 2ϵ

≤

√√√√√64G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F P̂ |
δ

N
+

8G2
max log

|F P̂ |
δ

3N
+ 2ϵ

≤

√√√√√64G2
max

(
E[Z(f̂)] + ϵ+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F P̂ |
δ

N
+

8G2
max log

|F P̂ |
δ

3N
+ 2ϵ

Since f̂ is the regression loss minimizer, 1
N

∑N
i=1 Zi(f̂) ≤ 1

N

∑N
i=1 Zi(GR,P̂) = 0, and we have

E[Z(f̂)] ≤

√√√√√64G2
max

(
E[Z(f̂)] + ϵ+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F P̂ |
δ

N
+

8G2
max log

|F P̂ |
δ

3N
+ 2ϵ.

Completing the square gives

E[Z(f̂)] ≤

√√√√128G2
max log

|F P̂ |
δ

N

(
ϵ+

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
+

112G2
max log

|F P̂ |
δ

3N
+ 28ϵ

and ϵ = 1
N , along with the identity of E[Z(f̂)] and |F P̂ | from Lemma 10, gives the final bound.

Lemma 10 (ℓ∞ cover of FP ′). Let P ′ be a valid transition matrix in the timing − as− an− action MDP, and
let FP ′ = {GR′,P̂ : R′ ∈ [0, 1]SA} be the induced function class of aggregate rewards. There exists an ℓ∞ cover

FP ′ , meaning that for any f ∈ FP ′ there exists f ∈ FP ′ with ∥f − f∥∞ ≤ ϵ, of cardinality
(
⌈ 1
(1−γ)ϵ⌉

)SA

.

Proof of Lemma 10. FP ′ is induced by an ℓ∞ covering of the one-step reward functions. Let R = {R′ : R′ ∈
[0, 1]SA}, and let R be its ℓ∞ covering of scale ϵ′, such that any R′ ∈ R has R ∈ R with ∥R′ −R∥∞ ≤ ϵ′. It is
easy to verify that the cardinality of R is ⌈ 1ϵ′ ⌉

SA, by discretizing the interval [0, 1] at a scale of ϵ′ for each (s, a).

Then we define FP ′ = {GR,P̂ : R ∈ R}.

For any f = GR′,P ′ ∈ FP ′ , consider f = GR,P ′ ∈ FP ′ , where ∥R−R′∥∞ ≤ ϵ′. Then using the definition of G in

Timing as an Action: Learning When to Observe and Act

(7), for any (s, a, k) we have

∣∣f(s, a, k)− f(s, a, k)
∣∣ = ∣∣∣∣∣

k−1∑
τ=0

γτ
∑
s′

P ′(s′|s, a, k)
(
R′(s′, a)−R(s′, a)

)∣∣∣∣∣
≤

k−1∑
τ=0

γτ
∑
s′

P ′(s′|s, a, k)
∣∣R′(s′, a)−R(s′, a)

∣∣
≤ 1

1− γ
∥R′ −R∥∞

≤ ϵ′

1− γ

Choosing ϵ′ = (1− γ)ϵ gives the result.

A.4 Proof of Proposition 1

We first decompose

∥Q∗ −QπQ̂∥∞ ≤ ∥Q∗ − Q̂∥∞ + ∥Q̂−QπQ̂∥∞

Next we bound the first term. Using the fact that Q∗ is the unique solution to the timing-as-an-action Bellman
equation in (2), and the definition of Q̂ in (8), for a fixed (s, a, k) we have∣∣∣Q∗(s, a, k)− Q̂(s, a, k)

∣∣∣
=

∣∣∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k) + γk
∑
s′

(
P (s′|s, a, k)max

a′,k′
Q∗(s′, a′, k′)− P̂ (s′|s, a, k)max

a′,k′
Q̂(s′, a′, k′)

)∣∣∣∣∣
≤
∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k)

∣∣∣+ γk
∑
s′

∣∣∣P (s′|s, a, k)− P̂ (s′|s, a, k)
∣∣∣max
a′,k′
|Q∗(s′, a′, k′)|

+ γk
∑
s′

P̂ (s′|s, a)
∣∣∣∣max
a′,k′

Q∗(s′, a′, k′)−max
a′,k′

Q̂(s′, a′, k′)

∣∣∣∣
≤
∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
γk

1− γ
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
+ γk

∥∥∥Q∗ − Q̂
∥∥∥
∞

where we use the fact P̂ is a valid transition and that ∥Q∗∥∞ ≤ 1/(1− γ) in the last inequality above. Since this
holds for any (s, a, k), we have∥∥∥Q∗ − Q̂

∥∥∥
∞
≤
∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
γ

1− γ
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
+ γk

∥∥∥Q∗ − Q̂
∥∥∥
∞

,

and rearranging the above inequality gives

∥Q∗ − Q̂∥∞ ≤
1

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
γ

(1− γ)(1− γ)
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1

For the second term, again fixing (s, a, k) and using similar techniques, we have

|Q̂(s, a, k)−QπQ̂(s, a, k)|

=

∣∣∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k) + γk
∑
s′

(
P̂ (s′|s, a, k)max

a′,k′
Q̂(s′, a′, k′)− P (s′|s, a, k)QπQ̂(s′, πQ̂(s

′))

)∣∣∣∣∣
=

∣∣∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k) + γk
∑
s′

(
P̂ (s′|s, a, k)Q̂(s′, πQ̂(s

′))− P (s′|s, a, k)QπQ̂(s′, πQ̂(s
′))
)∣∣∣∣∣ ,

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

since πQ̂ is the greedy policy w.r.t. Q̂. Then

|Q̂(s, a, k)−QπQ̂(s, a, k)| ≤
∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k)

∣∣∣+ γk
∑
s′

∣∣∣P (s′|s, a, k)− P̂ (s′|s, a, k)
∣∣∣ ∣∣∣QπQ̂(s′, πQ̂(s

′))
∣∣∣

+ γk
∑
s′

P̂ (s′|s, a)
∣∣∣Q̂(s′, πQ̂(s

′))−QπQ̂(s′, πQ̂(s
′))
∣∣∣

≤
∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
γk

1− γ
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
+ γk

∥∥∥Q̂−QπQ̂

∥∥∥
∞

Then rearranging, we have

∥Q̂−QπQ̂∥∞ ≤
1

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
γ

(1− γ)(1− γ)
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1

Then combining the two parts of the bound, we have

∥Q∗ −QπQ̂∥∞ ≤ ∥Q∗ − Q̂∥∞ + ∥Q̂−QπQ̂∥∞

≤ 2

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞

+
2γ

(1− γ)(1− γ)
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1

B Implementation Details

For the transition estimation experiments, optimization is done using SGD with a learning rate of 0.01. For the
RL environments, optimization is done using the Adam optimizer with a batch size of 500 and initial learning
rate of 10−3 for P̂ and 0.1 for R̂, and Q-value iteration is done to convergence, where convergence is defined
as a change of less than 10−5 for at least two iterations. For additional details, see the code provided in the
supplement, which reproduces all results in the paper. All experiments were conducted on a single machine
with 24 CPUs and 1 Titan RTX GPU. Windy grid experiments were conducted on the GPU whereas all other
experiments were conducted on CPU.

C RL Environment Details

The true one-step transition probabilities for the disease progression simulator are as follows:

true_P = np.array([

[

[0.89, 0.1, 0.01],

[0.15, 0.8, 0.05],

[0.0, 0.0, 1.0]

],

[

[0.1, 0.89, 0.01],

[0.8, 0.15, 0.05],

[0.0, 0.0, 1.0]

],

])

which is a A× S × S matrix, and the (i, j, k)-th element is the probability of transitioning to state k conditioned
on taking action i from state j.

D RL Experiment Results

Reward Estimation In the generative setting, averaged over 30 trials, we characterize the aggregate reward
estimation error when the reward model is learned in conjunction with the timing-aware and timing-naive models.
This estimation error is compared to when the reward model is learned but paired with an oracle transition

Timing as an Action: Learning When to Observe and Act

0 20 40 60 80 100
n

101

102

Es
tim

at
io

n
er

ro
r

||P,R − ̂P, ̂R||∞ vs. n
learning ̂R, oracle ̂P
learning ̂R, timing-aware ̂P
learning ̂R, timing-naive ̂P
empirical avg

Figure 5: Average reward estimation error ||GP,R − GP̂ ,R̂||∞ in the generative setting over 30 trials, with 95%

confidence intervals. The number of repetitions n = [1, 2, 5, 10, 20, 50, 100] is the number of per-(s, a, k) samples
drawn for all (s, a, k) ∈ S ×A×K.

model, as well as against simply averaging the rewards gathered from tuples of experience taking each action
from each state.

Overall, simply tracking the average empirical reward is the least sample efficient, followed by learning R̂ in
conjunction with timing-naive P̂ , followed by timing-aware P̂ , and finally using the oracle P when learning R̂.

Distribution of Actions Taken Next, we include visualizations of distribution of actions taken by the policy
in each environment (Figure 6) and the policies learned in the windy grid environment (Figure 7).

Model-Free

Timing-Naive

Timing-Aware

Model-Free

Timing-Naive

Timing-Aware

Action Distribution Delay Distribution

Disease Simulator

Model-Free

Timing-Naive

Timing-Aware

Model-Free

Timing-Naive

Timing-Aware

Action Distribution Delay Distribution

Glucose Simulator

Model-Free

Timing-Naive

Timing-Aware

Model-Free

Timing-Naive

Timing-Aware

Action Distribution Delay Distribution

Windy Grid

Figure 6: Distribution of actions (sub-left) and delays (sub-right) taken by the policy in the disease progression
(left), glucose monitoring (middle), and windy grid (right) environments. In the disease simulator, action 0
corresponds to “don’t treat” and action 1 corresponds to “treat.” Delays are 0-indexed, but delay 0 corresponds
to a one-timestep delay, delay 1 corresponds to a two-timestep delay, etc.

Helen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton

0 2 4 6 8

0

1

2

3

4

5

6

9 8 7 6 5 4 3 2 1
3

12
4 4

6 5 4 3 2 1
2

1
3 3

1
1

2 1
1 1 1

2
2 2

1 1
1

3
1 2

1 1 1
2 1 2 1 1 1 1

5 4 3 2 2 1
1

1 1 2

6 5 4 3 2 1 1 2
1

3

Timing-Aware Q-values

0 2 4 6 8

0

1

2

3

4

5

6

1 3 3 3
2

2
2

2 1 1
1

1 2
2

2 2 2 1
1

1
1

2
3 2 2 2

2 1
1

1
1

1

1 1 22 2
1 1 1

1 1
7

1
2
2

1 1 1 1
1

1 1

1 2 1 1 1 2 1 1
11

1 1 1

2 1 1 1 1 1 1 1
11

1
1

1

Timing-Naive Q-values

0 2 4 6 8

0

1

2

3

4

5

6

6 6 6
6 5 4 3 2 1

4

5 5 5
4 3 2 1

1 1 3

4 4 4
2 1

1
1

1 1 2

3 3 3
2 1 2 1

1 1

2 2 2
2 3 2 1

1 1 1 2

1 1 1
4 3 2 1

1
1 1

7 6 5 4 3 2 1 1 1
1

Oracle Q-values

9.0

9.2

9.4

9.6

9.8

Q
va

lu
es

×105

^ ^ ^^ ^^ ^ ^ ^ ^^ ^^ ^ ^ ^ ^^ ^^ ^

Figure 7: Maximum Q-values learned in each state from the timing-aware and timing-naive model-based methods
after 200 episodes, as well as the oracle Q values. In each grid state, the arrow gives the direction of the action,
the number gives the delay, and the color gives the value. ˆ or ˆˆ indicate a stochastic wind which pushes the
agent up with probability 0.5 for one or two squares, respectively. The star is the goal state, and the x’s are
hazard states.

	INTRODUCTION
	TIMING-AS-AN-ACTION
	RELATED WORK
	METHODS
	Timing-as-an-action Bellman Backup
	Learning Algorithms
	Model-free
	Model-based

	Analysis

	EXPERIMENTS
	Transition Model Estimation
	Reinforcement Learning Setting

	DISCUSSION
	Proofs for Section 4
	Proof of Lemma 1
	Proofs for Lemma 2 and Lemma 3
	Proof of Lemma 4
	Proof of Proposition 1

	Implementation Details
	RL Environment Details
	RL Experiment Results

