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Abstract

This paper proposes a perturbation-based algorithm to solve models with both idiosyncratic and
aggregate risk and a distribution of agents. The algorithm is described with an application to a version
of the canonical model of Krusell and Smith (1998), which features aggregate and idiosyncratic risk, a
continuum of agents, and incomplete markets. It proceeds by representing the equilibrium conditions of
the model as a system of functional equations, discretizing and linearizing these equations, and solving
the resulting finite-dimensional linear model using standard methods. We discuss theoretical convergence
properties of the method and present numerical results.

Keywords: perturbation methods, incomplete markets
JEL codes: C62, C63, D52, E32

∗The views expressed in this paper are those of the authors and do not necessarily represent those of the Federal Reserve
Bank of New York or the Federal Reserve System.

†CMU Email: dchilder@andrew.cmu.edu
‡Federal Reserve Bank of New York Email: keshav.dogra@ny.frb.org

1



1 Introduction

A large and growing literature studies the interaction between microeconomic heterogeneity and aggregate
fluctuations. Studying models with incomplete markets and a continuum of agents has proved challeng-
ing, however, because the distribution of wealth in these models is generally an infinite-dimensional state
variable. While many methods have been proposed to solve particular models, none have seen widespread
adoption in the way that perturbation methods have become the standard method used to solve represen-
tative agent DSGE models.

This paper introduces a perturbation-based algorithm to solve models with both idiosyncratic and
aggregate risk and a distribution of agents. For ease of exposition, the algorithm is described with an
application to a modified version of the canonical model of Krusell and Smith (1998), which features
continuously distributed aggregate and idiosyncratic risk, a continuum of agents, and incomplete markets.
It proceeds by representing the equilibrium conditions of the model as a system of functional equations,
discretizing and linearizing these equations, and solving the resulting finite-dimensional linear model using
standard methods akin to Blanchard and Kahn (1980). Thus, like the methods of Reiter (2009), Ahn et al.
(2017) and others, the approximation is linear with respect to aggregate shocks, but fully nonlinear with
respect to idiosyncratic risk.

Literature review There are many ways to solve models with both aggregate and idiosyncratic risk. Our
method is most similar to the subset of this literature that uses a combination of global and local methods to
solve these models. Our approach is inspired by the function space perspective on perturbation methods for
heterogeneous agent models in Childers (2018b), but substantially simplifies the implementation by allowing
all computation to take place directly in finite dimensional Euclidean space. The method introduced here
may be considered an application of the general framework described in Childers (2018a), in the special case
in which all functions are represented by histograms. Relative to the general case, this choice eliminates the
need for several steps of the process, reducing the procedure to application of standard numerical solution
methods to a discretized model.

Among other methods applying perturbation methods to heterogeneous agent models, our algorithm
is most closely related to Reiter (2009) and Winberry (2018). The difference between our algorithm and
their approaches is rather subtle. Both our and their approaches begin by representing a model as a
system of functional equations. In incomplete markets economies, these functional equations contain the
composition of endogenous functions with other endogenous functions. For example, the Euler equation
contains tomorrow’s marginal utility of consumption function evaluated at today’s saving function. We use
a change of variables formula to eliminate compositions of endogenous functions. This means that when we
linearize the model, the linearized equilibrium conditions (which are operators M mapping functions x(w′)

to functions (Mx)(w)) are Fredholm integral equations, i.e. take the form

(Mx)(w) =

∫
k(w,w′)x(w′)dw

As we discuss in detail in Section 4, this approach makes it easier to prove theoretical convergence results,
since it is relatively straightforward to approximate Fredholm integral equations. In contrast, Reiter (2009)
and Winberry (2018) approximate this composition of functions by approximating each function directly,
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using splines or Chebyshev polynomials. The derivatives of their equilibrium conditions are not Fredholm
integral equations, which makes it harder to prove convergence results. To be clear, our claim is not that
our method has superior convergence properties to Reiter (2009) and Winberry (2018). Instead, we view
our contribution as a first step in characterizing the theoretical properties of perturbation methods for
solving incomplete markets models more generally. Other perturbation-based approaches may well have
similar properties. Another closely related method is that of Ahn et al. (2017), who show how to discretize
a continuous time model using finite difference methods and then linearize with respect to aggregate shocks.

The remainder of the paper proceeds as follows. Section 2 describes the economic model. Section 3
describes our algorithm. Section 4 describes some of its theoretical properties. Section 5 presents numerical
results. Section 6 concludes.

2 Model

We use a variant of the Krusell and Smith (1998) economy to illustrate how to implement our perturbation
solution algorithm. Time is discrete. There exists a continuum of households with measure one. Households
have preferences

E0

∞∑
t=0

βt
(cit)

1−γ

1− γ
where γ > 0

over the single consumption good, where β < 1 denotes the discount factor. Markets are incomplete: the
only asset households have access to is capital, and they are restricted to hold a non-negative amount of
capital. Capital earns a rate of return rt and depreciates at rate δ. Each household is endowed with sit

units of effective labor, where sit is i.i.d. with density g(s), assumed to be infinitely differentiable and with
bounded support. Households inelastically supply their endowment of effective labor at a wage ωt. This
yields the budget constraint

kit+1 + cit = ωts
i
t + (rt + 1− δ)kit

Defining Rt = rt + 1− δ, the household’s problem yields the Euler equation

(cit)
−γ ≥ βEt[Rt(cit+1)−γ ] (1)

which holds with equality unless kit+1 = 0.
Competitive firms produce output Yt using a Cobb-Douglas technology combining capital Kt and effec-

tive labor input Lt:
Yt = ZtK

α
t L

1−α
t

where aggregate productivity Zt follows the process

lnZt = ρZ lnZt−1 + σεt (2)

and εt ∼ N(0, 1). Firms maximize profit, yielding rt = αZtK
α−1
t L1−α

t , ωt = (1− α)ZtK
α
t L
−α
t .
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The markets for goods, capital and labor clear:

Kt+1 =

∫
kit+1di = Yt −

∫
citdi (3)∫

sg(s)ds = Lt (4)

Note that the supply of effective labor is constant, Lt = L.

3 How we solve Krusell Smith

3.1 Writing the model as a set of functional equations

In a recursive equilibrium, household i’s decision depends on its individual state variables kit, sit; the aggre-
gate exogenous state variable zt; and the distribution of wealth. Since sit is independent over time, we can
work with ‘cash on hand’, wit = Rtk

i
t + ωts

i
t, as an individual state variable which evolves according to

wit+1 = Rt+1(wit − cit) + ωt+1s
i
t+1

Let µt(w) denote the cross-sectional density of cash on hand at date t. The t subscript indicates that this
density itself depends on the current aggregate shock and the past distribution of wealth.

We rewrite the Euler equation 1 using a version of the parameterized expectations algorithm. Define
the expected discounted marginal utility of consumption `it = βEt[Rt+1u

′(cit+1)]; we will work with `it rather
than cit. Then we can rewrite the Euler equation as

`it = βEt[Rt+1 min{`it+1, (w
i
t+1)−1/γ}]

Here the expectation is taken over both aggregate and idiosyncratic shocks. We can rewrite this as a
functional equation:

`t(w) = βEt
[
R(Zt+1,Kt+1)

∫
ct+1 (R(Zt+1,Kt+1)[w − ct(w)] + ω(Zt+1,Kt+1)s)−γ g(s)ds

]
(5)

where the expectation is taken over aggregate shocks only, and we use the shorthand notation

ct(w) = min{`t(w)−1/γ , w} (6)

R(Z,K) = αZKα−1L1−α + 1− δ (7)

ω(Z,K) = (1− α)ZKαL−α (8)

Note that in evaluating the right hand side of equation (5) for a household with date t wealth w, we must
evaluate tomorrow’s consumption function ct+1(·) on values which depend on today’s consumption function
ct(·). To circumvent this problem, we can use a change of variables to obtain

`t(w) = βEt
[
R(Zt+1,Kt+1)

∫
ct+1(w′)−γ

1

ω(Zt+1,Kt+1)
g

(
w′ −R(Zt+1,Kt+1)(w − ct(w))

ω(Zt+1,Kt+1)

)
dw′
]

(9)
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(9) no longer contains the composition of two endogenous functions, but only the composition of an exoge-
nously given function g(·) with the endogenous function ct(·)

Similarly, the distribution of cash on hand µt(x) evolves according to the discrete-time Kolmogorov
forward equation

µt+1(w′) =

∫
1

ω(Zt+1,Kt+1)
g

(
w′ −R(Zt+1,Kt+1)(w − ct(w))

ω(Zt+1,Kt+1)

)
µt(w)dw (10)

The market clearing condition can be written

Kt+1 −
∫

(w − ct(w))µt(w)dw = 0 (11)

An equilibrium of the model is a collection of sequences {µt(·), `t(·),Kt, Zt}∞t=0 that solve (9), (10), (11),
(2).

3.2 Adding lagged variables

Like the methods of Blanchard and Kahn (1980), Klein (2000) and others, our solution method requires
us to distinguish between ‘predetermined’ variables (those with an exogeneously determined initial value)
and ‘non-predetermined’ variables. In the system of functional equations (9), (10), (11), (2), one might
think that the policy function `t(w) would be a non-predetermined variable, while the distribution of cash
on hand µt(w) would be a predetermined variable. Unfortunately, this is not quite right: µt(w) is not a
predetermined variable. While the distribution of capital is predetermined, the mapping from capital to
cash on hand depends on factor prices, which themselves depend on the aggregate productivity shock. This
problem can be solved in the usual way, by augmenting the system to include lagged variables - in this case,
lagged policy functions and distributions of wealth, which we define by

Lµt+1(w) = µt(w) (12)

L`t+1(w) = `t(w) (13)

The Kolmogorov forward equation becomes

µt(w
′) =

∫
1

ω(Zt,Kt)
g

(
w′ −R(Zt,Kt)(w − Lct(w))

ω(Zt,Kt)

)
Lµt(w)dw (14)

where again for convenience we define Lct(w) = min{L`t(w)−1/γ , w}. Our complete system of equations
is then (9), (14), (12), (13), (11), (2). The predetermined variables are Lµt(·), L`t(·),Kt, Zt and the non-
predetermined variables are µt(·), `t(·).

3.3 Discretizing, linearizing and solving the model

Having reduced the model to a set of nonlinear functional equations, the algorithm proceeds as follows.
First, we discretize the model, representing the functions µt(·), `t(·) as finite-dimensional vectors, and
the functional equations (9), (14) and so forth as nonlinear vector equations. Second, we solve for the
deterministic steady state in which aggregate shocks are absent but idiosyncratic shocks remain. Third, we
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linearize the system of nonlinear vector equations around the deterministic steady state. Finally, we use a
variant of the Klein (2000) method to solve the linearized, discretized model.

Discretizing the model We define a grid W = {w1, w2, ..., wn} and represent µt(·) and `t(·) by their
values on this grid. We approximate integrals by Riemann sums, or equivalently, by histograms with bin
heights given by the values at the grid points, so the discretized Euler equation and Kolmogorov forward
equation becomes

`t(wi) = βEt

R(Zt+1,Kt+1)ι

n∑
j=1

ct+1(wj)
−γ

ω(Zt+1,Kt+1)
g

(
wj −R(Zt+1,Kt+1)(wi − ct(wi))

ω(Zt,Kt)

) (15)

µt(wj) = ι

n∑
i=1

1

ω(Zt,Kt)
g

(
wj −R(Zt,Kt)(wi − Lct(wi))

ω(Zt,Kt)

)
Lµt(wi) (16)

where we define ι = wn−w1
n . This gives us a system of 4n + 2 dynamic nonlinear equations in 4n + 2

variables:
{Lµt(wi)}ni=1, {L`t(wi)}ni=1,Kt, Zt, {µt(wi)}ni=1, {`t(wi)}ni=1

Denoting the vector of predetermined variables by xt and the vector of non-predetermined variables by yt,
we have

Etf(xt+1, yt+1, xt, yt) = 0

This system has exactly the same structure as standard representative agent models, which are often solved
using perturbation methods. Our method (like Reiter (2009) and Ahn et al. (2017)) exploits this analogy.
Assuming that a recursive solution exists, a solution to the discretized model has the form

yt = g(xt)

xt+1 = h(xt) + ησεt+1

where η is a (2n+ 2)× 1 vector whose elements are all zero except for its last element which equals 1.

Solving for steady state Second, we solve for a deterministic steady state in which aggregate shocks are
absent, so σ = 0 and Z is constant, but idiosyncratic shocks remain. A steady state of the discretized model
is a capital stock K, a cash on hand distribution {µ(wi)}ni=1, and a policy function {`(wi)}ni=1. Stacking
these vectors as x = (µ, `,K, 1), y = (µ, `), the steady state is a pair (x, y) which solves f(x, y, x, y) = 0, if
such a pair exists. The steady state can be computed using standard methods as in Aiyagari (1994). The
one proviso is that to ensure accuracy guarantees for the full method, the steady state must likewise be
computed with sufficient accuracy. For these purposes, it is sufficient to assume that the value of the steady
state functions on this grid converges uniformly over all grid points to the true steady state values either (a)
at rate o(n−1) or (b) at rate O(n−1) and the parameterized expectation function {`(wi)}ni=1 is monotone
over the grid. In all our example applications, monotonicity holds empirically, and the latter convergence
rate is standard for discretization methods. For any uniformly accurate approximation method, arbitrarily
fast convergence rates can be achieved, if needed, by refining the discretization, and passing on only a
subset of grid values to the next step.
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Linearization Next, we compute a first order Taylor approximation of the discretized equilibrium con-
ditions around the deterministic steady state.1 This step can be performed either analytically or using
automatic differentiation. Analytical derivatives for our model are described in Appendix A. Automatic
differentiation means the numerical computation of derivatives using exact differentiation rules rather than
finite-difference approximations. This dominates finite-difference methods in terms of accuracy and sym-
bolic differentiation in terms of speed.2 If automatic differentiation is used, all the remaining steps in the
algorithm can be automated, given a set of nonlinear equations and a steady state provided by the user.
Similarly, if analytical derivatives are provided, the remaining steps in the algorithm can be automated.
The first order Taylor approximation gives us the system

AEt

[
x̂t+1

ŷt+1

]
= B

[
x̂t

ŷt

]

where hats denote deviations from the deterministic steady state y∗, x∗. We are now almost ready to
use Schur decomposition methods, as in Klein (2000), to compute a linear approximation to the policy
functions, i.e. the 2n× (2n+ 2) matrix gx and the (2n+ 2)× (2n+ 2) matrix hx. Before doing so, there is
one minor transformation which must be made to the model.

Normalization Recall that µt(x) denotes the distribution of cash on hand; we approximate it by a vector
{µ̂t(xi)}ni=1 denoting the deviations of the distribution from steady state, evaluated on our grid. Since µt
is a distribution, it should always integrate to one, whatever the sequence of aggregate shocks. Therefore
we enforce that {µ̂t(xi)}ni=1 always integrates to one, as follows. Define the matrix

P =


1 0 . . . 0

1 1 . . . 0
... 0

. . .
...

1 0 . . . 1


and take the QR decomposition P = QR of P . We define S to be the transpose of the matrix obtained
by deleting the first column of Q. This (n − 1) × n matrix maps a n-vector representing the deviation of
a distribution from steady state into a (n− 1)-vector representing the deviation of a distribution which is
constrained to sum to zero.

We then premultiply every equation block by S if it outputs a distribution. Given our ordering of
equations, this means that we premultiply the second equation block (16), which defines the current cash
on hand distribution µt(x), and the third equation block (12), which updates the lagged cash on hand
distribution. Similarly, we postmultiply the first variable (Lµt) and the fifth variable (µt) by S. Formally,
we define

Ã = QfA

[
Qx 0

0 Qy

]
, B̃ = QfB

[
Qx 0

0 Qy

]
1For ease of exposition, we linearize rather than log-linearizing, but nothing prevents us from log-linearizing as is standard.
2We use the Julia package ForwardDiff.jl, which implements forward mode automatic differentiation (Revels et al., 2016).
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where

Qf =



In 0 0 0 0 0

0 S 0 0 0 0

0 0 S 0 0 0

0 0 0 In 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Qx =


S 0 0 0

0 In 0 0

0 0 1 0

0 0 0 1

 , Qy =

[
S 0

0 In

]

Ã and B̃ are both 4n× 4n matrices. They define the linear system

ÃEt

[
x̃t+1

ỹt+1

]
= B̃

[
x̃t

ỹt

]
(17)

where x̃t = Qxx̂t, ỹt = Qyŷt denote normalized variables.

Schur decomposition Finally, we apply the generalized Schur decomposition to (17) as in Klein (2000),
and then use the results to construct linearized solutions as in Schmitt-Grohe and Uribe (2004). This gives
us a solution in terms of normalized variables: ỹt = g̃xx̃t, x̃t+1 = h̃xx̃t + ησεt+1. To recover a solution in
terms of un-normalized variables, we simply define3

gx = Q−1
y g̃xQ

−1
x , gx = Q−1

x h̃xQ
−1
x

This completes our solution of the model.

4 Theoretical Results

The algorithm described in Section 3 builds on the perturbation approach to solution of rational expec-
tations models with function-valued variables described in Childers (2018b) and the framework for auto-
mated solution of such models provided in Childers (2018a). Finite-dimensional perturbation methods (e.g.
Schmitt-Grohe and Uribe (2004)) aim to find a local approximation of the solution of a rational expecta-
tions model - in other words, they aim to find the derivatives of the policy functions g and h evaluated
at a non-stochastic steady state, which are matrices mapping finite vectors to finite vectors. We have the
same goal. The difference is that in models with function-valued variables, such as incomplete markets
models, the policy functions g and h are infinite-dimensional mappings from functions to functions - for
example, mapping a distribution of wealth today to a distribution of wealth tomorrow, or a distribution
of wealth today to a consumption function today. In practice, we must approximate these infinite dimen-
sional objects by finite-dimensional objects. Any such approximation is imperfect: our finite-dimensional
approximations to gx and hx cannot exactly describe how the distribution of wealth or the consumption
function would evolve given any sequence of shocks. Nonetheless, we would like our approximation to be
accurate in the sense that as we increase the number of grid points in our finite-order approximation, our
approximate solution converges to the true solution (i.e. the derivatives of the policy functions of the ‘true’,
infinite-dimensional model).

3Note that since Qx and Qy are orthogonal, Q−1
x = Q>x , Q−1

y = Q>y .
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Intuitively, we need two conditions to hold in order for our finite-order approximation to the policy
functions to converge to the true, infinite-dimensional policy functions. First, we need our finite-dimensional
representation of the model’s linearized equilibrium conditions to converge to the ‘true’ infinite-dimensional
linearized equilibrium conditions in an appropriate norm. Second, we need the mapping from equilibrium
conditions to linearized policy functions to be continuous in an appropriate sense.

Our algorithm is designed to ensure that the first of these conditions holds: our finite-dimensional
representation of the model’s linearized equilibrium conditions converges to the ‘true’ infinite-dimensional
linearized equilibrium conditions as the number of grid points increases, in a sense to be defined below.
This can be demonstrated by applying the general results for approximation of functional derivatives of
economic models introduced in Childers (2018a). The main difficulty is that incomplete market models
such as Krusell and Smith (1998) have kinks in their equilibrium conditions due to the presence of binding
borrowing constraints; in particular, the consumption function has a kink at the point where the borrowing
constraint is just binding. Kinks in the equilibrium conditions translate into discontinuities in the functional
derivatives of the equilibrium conditions, which makes it hard to show uniform convergence. We discuss
how our method ensures that this is the case.

In contrast, there is no guarantee that the second condition described above holds, i.e. that the map-
ping from linearized equilibrium conditions to linearized policy functions is continuous. This mapping is
constructed from an infinite-dimensional version of the Schur decomposition employed in standard linear
rational expectations solution methods (Klein (2000), Schmitt-Grohe and Uribe (2004)). In order for our
approximate policy functions to converge to true functions, we need to assume - in addition to infinite-
dimensional analogues of the standard Blanchard and Kahn (1980) conditions stating that the number
of pre-determined variables equals the number of stable eigenvalues - that these eigenvalues are not too
sensitive to small changes in the linearized equilibrium conditions. These conditions are formally stated
in Childers (2018b) Condition (1). It is not possible to prove analytically whether the Krusell and Smith
(1998) model satisfies these conditions, nor can they be directly verified numerically. It is possible to per-
form tests which detect asymptotically some violations of these conditions, using our finite approximation
of the model and its eigenvalues, as described in Appendix B, though these tests cannot detect all possible
cases in which the eigenvalues of the true infinite-dimensional model may not be well-behaved. Nonetheless,
if Condition (1) holds, our finite-order approximation to the policy functions does indeed converge to the
true, infinite-dimensional policy functions.

Finally, it is worth noting that all our approximation results concern convergence of the finite-dimensional
linearized model to the infinite-dimensional linearized model. The infinite-dimensional linearized model is
still only a first order approximation to the ‘true’, infinite-dimensional nonlinear model.

4.1 Guarantees for Functional Derivatives of the Equilibrium Conditions

For shorthand, denote by
F(xt+1, yt+1, xt, yt) = 0

the system of equations (9), (14), (12), (13), (11), (2), xt = {Lµt(.), L`t(.),Kt, Zt} be the vector of predeter-
mined variables, yt = {µt(.), `t(.)} the vector of jump variables, andHx = {L2

0×L2×R×R}, Hy = {L2
0×L2}

the spaces of square integrable functions on which these objects live. Note that F is a functional equation.
The algorithm described in Section 3 produces a pair of matrices (Ã, B̃) which are discretized approxi-
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mations of the functional derivatives (A,B) of F with respect to (xt+1, yt+1) and (xt, yt) respectively.4 In
order to ask whether our finite approximation converges to the true (A,B) as the number of grid points
becomes large, we need to define the distance between our finite-dimensional matrices and the true infinite
dimensional functional derivatives, i.e. we need to choose a metric. The metric we choose is based on the
operator norm. For any linear map M [.] defined over a Hilbert space H of functions with norm ‖.‖H, the
operator norm is defined as

‖M‖op := sup
{x∈H:‖x‖H=1}

‖M [x]‖H

We focus on convergence in operator norm, rather than a weaker notion of convergence, because the
equilibrium conditions must converge in this strong sense in order for our approximation to the model’s
policy functions gx, hx to converge. However, the operator norm is defined on functions, and can be used
to describe the distance between two functions; it cannot describe the distance between a function and
a vector. So in order to describe a sense in which our finite-dimensional matrices (Ã, B̃) converge to the
infinite-dimensional operators (A,B), we need to interpret the matrices (Ã, B̃) as operating on a space of
functions. One way to do so is to describe an interpolation scheme which takes a finite vector and outputs
an infinite-dimensional functions.5 In particular, the interpolation scheme we will use in our proofs maps
vectors to piecewise constant functions or histograms.

More concretely: let K̃ be a n × n matrix mapping n-vectors to n-vectors. We want to interpret it as
an operator M̃ which, given an input function x(w), produces an output function y(w) = (M̃x)(w). We
do so as follows. Given an input function x(w) and a grid Wn := {w1, ..., wn}, define the n-vector x by

xi =
1

wi − wi−1

∫
x(w)1 {wi−1 ≤ w < wi} dw, i = 1, ..., n,

where w0 = −∞, define the n-vector y = K̃x, and define the function y(w) by

y(w) =

n∑
i=1

1 {wi−1 ≤ w < wi} yi

Equivalently,

(M̃x)(w) =

∫
1

wj − wj−1

n∑
i=1

n∑
j=1

1
{
wi−1 ≤ w < wi, wj−1 ≤ w′ < wj

}
x(w′)dw′ (18)

=

∫
k̃(w,w′)x(w′)dw′ (19)

Having defined the operator mapping functions to functions in this way, we can then compute the
distance between this operator and another operator mapping functions to functions - in particular, the true
infinite-dimensional linearized equilibrium set of equilibrium conditions A. This is how we will conceptualize

4Precisely, as Lµ and µ are density functions and so are defined only on the cone of non-negative functions integrating to
1, derivatives with respect to these arguments may be interpreted as the unique extension of the right (functional) derivatives
defined over L2

0, the space of square integrable functions which integrate to 0: see Childers (2018b) Appendix C.2. Derivatives
with respect to all other arguments may be taken to be Fréchet derivatives.

5We do not actually need to construct this interpolation scheme in practice. It is a device used to ensure that (Ã, B̃)
converge to (A,B) in a sense which is strong enough to ensure that our approximations to gx, hx converge, assuming of course
that Condition (1) happens to hold.
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the distance between our finite representation of the equilibrium conditions and the true infinite-dimensional
equilibrium conditions.

Having defined convergence in operator norm, actually showing convergence in operator norm is hard for
general maps A. However, the economic model described in Section 2, and in particular our representation
of the model a set of functional equations in Section 3, have a special structure which allows us to show
that convergence obtains. To explain why, we need to linearize the functional equations in function space.6

The reason that the infinite dimensional operator can be well approximated by finite matrices is that it
takes the form of a set of integral equations. After linearization in function space, each subcomponent of
the conditions acting on a space of functions correponds to an integral operator of the form

(Mx)(w) =

∫
k(w,w′)x(w′)dw′ (20)

where the kernel function k(w,w′) is a function defined in terms of derivatives of equilibrium conditions
at the steady state. Here the notation means that the operator M applied to the function x(w′) outputs
another function M [x]. Evaluating this function at the particular value w gives the value M [x](w). For
example, the derivative of the Euler equation 9 with respect to `t+1(w′) is the mapping

F1
`t+1

[`t+1](w) :=

∫
k(w,w′)`t+1(w′)dw′

where the kernel function k(w,w′) is defined as7

k(w,w′) =
βR

ω
1(`(w)−1/γ < w)g

(
w′ −R(w − c(w))

ω

)
The true linearized equilibrium conditions (20) and the approximate equilibrium conditions (18) have

the same form: they are both integral equations. Approximating the operator M by the operator M̃ is
equivalent to approximating the kernel function k(w,w′) by the histogram k̃(w,w′). In order to show that
M̃ converges to M in operator norm, it suffices to show that k̃ converges to k in a particular norm, which
is dominated by the L∞ norm.8 It is well known that histogram approximations of sufficiently regular
functions converge in L∞ (see, e.g. Nickl (2013)). Unfortunately, the presence of borrowing constraints
induces discontinuities in some of our kernel functions k and the location of these discontinuities - the
level of cash on hand w∗ at which individuals are just liquidity constrained in the nonstochastic steady
state of the true infinite-dimensional model - is not known, but must be approximated numerically. As a
consequence, convergence of k̃ to k in L∞ is not guaranteed.9

We deal with this issue as follows. In order to prove that approximate equilibrium conditions converge to
6Again, this step needs to be performed in the proof, but not in practice. The algorithm first discretizes the model,

then linearizes, so it is never necessary to actually compute the functional derivatives of the model, although this step is
straightforward in principle.

7 The derivatives of the discretized model are presented in Appendix A. The derivatives of the infinite-dimensional model
are essentially the same, but with weighted sums replaced with integrals.

8This follows from Young’s inequality: see Johnstone (2013) Theorem C.26.
9While results for substantially weaker norms, such as L2 norm, are readily available in this case (Mallat (2008)), these

cannot control the approximation error of the map in terms of the operator norm. Intuitively, this is because uniformity
over all function inputs must permit functions with substantial mass concentrated precisely at the region between the true
discontinuity and the approximated value of the discontinuity, in which true and approximate functions must differ by an
amount bounded away from 0.
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true equilibrium conditions in a useful sense, we do not actually need to implement a particular interpolation
scheme (i.e. a particular gridWn) in practice. We only need to show that some interpolation scheme exists.
So we can choose - purely in theory - a grid Wn which includes w∗ as one of its endpoints, and is evenly
spaced (possibly with different widths) on each side. Call this the transformed histogram representation of
the kernel function. Since the kernel function is continuous on either side of this discontinuity, standard
histogram interpolation results imply that our transformed histogram representation of the kernel function
k̃ converges uniformly to the true kernel function k. This in turn applies that the approximate operator M̃
associated with the transformed histogram representation converges to the true M in operator norm.

Since we do not know w∗ exactly, we cannot actually implement the transformed histogram representa-
tion. Instead, we work with a known histogram representation with evenly spaced grid points, which will
not include the breakpoint w∗. This k̃ may not converge uniformly to k. However, it may still be the case
that the integral operator M̃ associated with k̃ converges to the true integral operator M , provided that
we only apply these operators to sufficiently smooth input functions x(w). If x is smooth, the known and
transformed histogram representations of M̃x will differ little. Since the transformed histogram represen-
tation is accurate with respect to operator norm, the known histogram representation will also be accurate
with respect to L2 norm. The upshot of this sequence of transforms and inverse transforms is that M̃x is
an accurate representation of Mx for sufficiently smooth functions x. Similarly, under the conjecture that
the solution map from approximate derivatives of equilibrium conditions to derivatives of policy functions
is continuous, operator norm accuracy of the transformed histogram representation will also ensure that
the approximate solution of the model g̃x, h̃x is accurate, in the sense that g̃xx, h̃xx are close to gxx, hxx
for sufficiently smooth x. This means that objects of direct economic interest, like impulse responses to
shocks and initial conditions away from the steady state, are also represented accurately.

Finally, before formalizing the consistency in the above sense of the functional derivatives, two more
transformations need to be made, both of which are, at least in this model, purely formal in nature, in
the sense that, although they change the form of the matrices (Ã, B̃), they leave the solutions (gx, hx)

numerically identical, and so need not be implemented in practice. The first relates to the fact that some
derivatives do not take the form described above, as kernel integral operators. In some cases, the functional
derivative is simply an identity; in these cases, the numerical derivative is an identity matrix, which creates
no issues with respect to the representation as a map on the space of functions. For others, including
specifically the derivative of the Euler equation with respect to `t(w), the derivative does not take the form
of an integral or an identity, but produces a diagonal matrix corresponding to multiplication by a function.
Fortunately, this can be transformed to the other form by dividing all elements of the row of derivatives of
the Euler equation by this function, and so dividing the kernel functions by this function. Approximation
can then be measured in terms of the properties of this new kernel function. Numerically, this corresponds
to multiplying by the inverse of the diagonal matrix of derivatives with respect to `t(wi). As noted in
Childers (2018a), left multiplication of a row by an invertible matrix leaves the solution unchanged.

Second, the procedure described in Childers (2018a) works explicitly with matrices which map coeffi-
cients of an orthonormal basis function representation of the input function to the coefficients of the basis
function representation of the output function. It does this by including an extra step, which multiplies the
matrices corresponding to the values of the kernel functions on a grid by interpolation matrices which pro-
vide the coefficient representation of these kernel functions. While this allows alternative choices of function
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representation map beyond histograms, it requires distinguishing which parts of derivatives correspond to
kernel functions and which correspond to identity maps. The useful property of evenly spaced histograms
is that the coefficients can be chosen to be just the values of the grid points, scaled by a constant equal to
the square root of the width of the bin, to assure that the L2 norm of each term equals 1. It can therefore
be shown (see Appendix) that the coefficient representation is just a constant rescaling of the rows and
columns. As noted above, a rescaling of the rows produces identical solutions. A related result shows that
a rescaling of the columns simply rescales the solution matrices; the corresponding function representation
remains the same, though one should interpret the entries of the solution matrices as on the scale of values
rather than of coefficients. Although in this case one must use a transformed histogram representation
which is not necessarily evenly spaced to derive the bounds, in terms of implementation one can continue
to use the same rescaled identity map to produce approximate coefficients which still produce sup norm
accurate function approximations, albeit with some cost to accuracy relative to the infeasible case in which
the exact location of the discontinuities were known.

Denote by (Ãm, B̃m) the matrices resulting from applying the two transforms (division of the Euler
equation by the diagonal matrix of the derivative with respect to `t(w) and scaling the rows and columns
by the square root of the width). Again, these need not be computed in practice but the guarantees must
be defined in terms of this representation of the derivatives.

The following lemma formalizes the above discussion, demonstrating that the method described pro-
duces Jacobian matrices (Ãm, B̃m) such that the operators constructed from the evenly spaced histogram
representations of these matrices converge uniformly over the class of smooth input functions. Specifically,
define the classes of smooth functions Hx ⊃ Λαx := {(Lµ(.), L`(.),K, Z) ∈ L2

0 × L2 × R × R : Lµ(.) ∈
Λα(w), L`(.) ∈ Λα(w)} , Hy ⊃ Λαy := {(µ(.), `(.)) ∈ L2

0 ×L2 : µ(.) ∈ Λα(w), `(.) ∈ Λα(w)}. In words, these
are the subsets of the function spaces in which all functions are Hölder continuous with exponent α ≥ 1

2 .

1. There exist some C1, N such that for n > N the maps Pn = (P xn , P
y
n ) : Hx × Hy → R2n+1 × R2n−1

which map each `(w) to its histogram representation P [`] := {
∫
`(w)1{wn−w1

n (i− 1) ≤ w < wn−w1
n i}dw}ni=1

and each µ(w) to its normalized histogram representation SP [µ], satisfy,

sup
{(x,y)∈Λαx×Λαy :‖(x,y)‖Hx×Hy=1}

max{
∥∥∥[P ∗nÃ

mPn −A](x, y)
∥∥∥
Hx×Hy

,
∥∥∥[P ∗nB̃

mPn −B](x, y)
∥∥∥
Hx×Hy

} ≤ C1n
− 1

4

Remark. The proof of the lemma follows by first verifying the conditions of Childers (2018a) Lemma
(10), which ensures that the set of kernel functions defined by the set of derivatives of the equilibrium
equations satisfy sufficient regularity to be approximated at the given rate in operator norm by a function
representation piecewise over the regions between discontinuities. One may then apply Lemma (25) of
Childers (2018a), which demonstrates that over Hölder smooth inputs, replacing coefficients with respect
to an evenly spaced histogram with those with respect to one aligned with the discontinuities contributes
approximation error which is asymptotically of no higher order than the original error. The claimed rate of
convergence is derived from the error contributed by terms due to histogram approximation of the kernel
function, quadrature error from numerical integration, and numerical error in constucting the steady state,
as well as from "stretching" the original input function and the histogram bins when converting between
the evenly spaced and the transformed representation. This rate is slower than the O(n−1/2) rate that
could be obtained had the location of a discontinuity been exactly known, but still ensures consistency.
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4.2 Conjecture regarding model parameters and implications of such conjecture

While the method described ensures accurate computation of the functional derivatives in the sense defined
in Lemma (1), which provides some reassurance regarding the numerical results as reflecting the properties
of the model, the accuracy of the results depends not only on the numerical properties of the system, but
also on the numerical properties of the solution algorithm. As discussed earlier, a sufficient condition for
the accuracy of the solutions (gx, hx) as numerical approximations of the functional derivatives of the policy
functions of the model around the non-stochastic steady state is the continuity of the map defining these
solutions as a function of the derivatives of the equilibrium conditions. Unfortunately, this map need not be
continuous nor even be well defined for all models or parameter values. Sufficient conditions for continuity
to hold are provided in Childers (2018b) Condition (1), which extends the Blanchard Kahn eigenvalue
conditions for existence and uniqueness of a stable solution of the linearized equations to the function space
setting and additionally imposes a stability condition which ensures that the numerical stability result for
the QZ algorithm argued by Klein (2000) to provide strong justification for its use in the solution of linear
rational expectations models extends to the infinite dimensional setting. As these are properties of the
exact model and depend on the true spectrum, which can be approximated but not, in general, computed
exactly nor have its properties verified outside of a few tractable special cases, whether they hold in the
Krusell Smith model for the parameters chosen is unknown. Nevertheless, such a possibility is not ruled
out nor, in the authors opinions, does it appear to be implausible in cases where the diagnostic criteria of
Appendix B do not indicate a clear violation. For this reason, it is stated as a conjecture:

2. For the parameters at which the model is evaluated, the system of equilibrium conditions F satisfies
Condition (1) in Childers (2018b)

More specifically, this imposes the following: that the true system of (functional) derivatives of the
equilibrium conditions has generalized eigenvalues bounded away from the unit circle, with this separation
defined according to a particular measure defined in that paper, and the space corresponding to the set of
eigenvalues outside the unit circle is isomorphic to the space spanned by the jump variables y = (µt(.), `t(.)).

Remark. While not fully verifiable in this case, there are observable conditions which might rule out or
provide evidence against the veracity of said conjecture. In particular, for finite dimensional isolated
subsystems of the equations, this condition requires that the standard Blanchard Kahn conditions hold. So,
for example, if an exogenous component possesses unstable dynamics, then no values of the other variables
in the system can ensure that it is stable, and so the conditions would not be satisfied. Concretely, in this
model, |ρZ | > 1 would result in a failure of the conjecture. Numerically, the (asymptotic) tests provided
in Appendix B consist of relaxations of the Blanchard Kahn conditions requiring the set of generalized
eigenvalues outside the unit circle to be being equal to the cardinality of the space of jump variables
as applied to the finite dimensional matrices (Ã, B̃). In cases where this is violated or nearly violated
even for large n, one should not proceed to use the resulting numerical solutions, in the same way one
would discard such parameter values in the finite case. The additional continuity condition is harder to
check, even asymptotically. Although a modulus of continuity from the derivatives to the solution can be
approximated in some cases, and so when close to 0 can indicate violations of the continuity requirement, it
is not guaranteed that all failures of continuity will result in a small estimated modulus, and so one should
proceed with caution even if this indicator does not suggest any concerns.
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If conjecture (2) holds, the output of the proposed algorithm then can be assured to satisfy approxima-
tion bounds comparable in structure and in rate to those satisfied by the approximate functional derivatives.
Intuitively, as the solution is then continuous in operator norm, operator norm convergence of the represen-
tation of the functional derivatives in the space of functions implies that the approximate solution operators
generated by the same mapping from matrices to the space of functions applied to the derivatives maps the
solution matrices gx, hx to operators which also converge in operator norm to the true functional derivatives
of the solutions. Moreover, by the same guarantees relating the transformed representation to the known
representation of functions in terms of histograms over evenly spaced intervals for smooth functions, this
implies that over the space of appropriately smooth initial conditions x ∈ Λx, the solution maps produce
accurate approximations of the response of the economy to these states. Stated precisely:

Proposition 3. Assume that the conditions for Lemma (1) hold and that the model parameters are such
that Conjecture (2) is true. Then, there exists some C2, C3, N such that for n > N

For the same histogram representation maps operators P xn : Hx → R2n+1, P yn : Hy → R2n−1 as in
Lemma (1)

sup
{x∈Λαx :‖x‖Hx=1}

‖[P y∗n g̃xP
x
n − gx](x)‖Hy ≤ C2n

− 1
4

sup
{x∈Λαx :‖x‖Hx=1}

∥∥∥[P x∗n h̃xP
x
n − hx](x)

∥∥∥
Hx
≤ C3n

− 1
4

Remark. Provided the conditions hold, for any sufficiently smooth function, the histogram representation of
that function when passed through the solution matrices produced by the algorithm can be compared to the
true response generated by the model to that perturbation, and the distributions of wealth, consumption
policy rules, and aggregate capital generated by the numerical approximation should differ by an amount
which is small, and which becomes more accurate as a finer discretization is applied.

Often, beyond the policy functions themselves, objects of economic interest include maps which are
defined by repeated application of the policy function, such as impulse response functions. Because the
above approximation results describe accuracy over a limited class of inputs, proposition (3) does not directly
imply that impulse response functions beyond the initial response are calculated accurately. Nevertheless,
the same results can be extended to iterated applications of the policy maps, and so can provide numerical
convergence results for IRFs.

Proposition 4. Assume that the conditions for Proposition (3) hold. Then there exists some C4, N such
that for n > N , for any non-negative integer k

sup
{x∈Λαx :‖x‖Hx=1}

∥∥∥[P y∗n h̃kxP
x
n − hkx](x)

∥∥∥
Hy
≤ C4n

− 1
4

sup
{x∈Λαx :‖x‖Hx=1}

∥∥∥[P y∗n g̃xh̃
k
xP

x
n − gxhkx](x)

∥∥∥
Hy
≤ C5n

− 1
4
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5 Numerical Results

Our parameterization of the model is relatively standard. We set β = 0.95, γ = 3, α = 1/3, δ = 0.2.
The aggregate productivity shock has mean 1, persistence ρ = 0.95 and standard deviation σ = 0.01. The
idiosyncratic shock to households’ labor endowment is the sum of two i.i.d. shocks. The first shock is a
truncated log-normal with variance 0.5, lower bound 0.5 and upper bound 1.5. The distribution of the
second shock is a mollifier: a smooth function with compact support.10 We calculate integrals over the
log-normal component of skill s using Curtis-Clenshaw quadrature with a grid of 50 points. We use 160
grid points for cash on hand w.

Figure 1a plots the steady state distribution of cash on hand µ(w). The distribution is modestly skewed
to the right. Figure 1b plots the steady state consumption policy function. As is standard, the consumption
function is concave: households at the borrowing limit have a marginal propensity to consume (MPC) c′(w)

equal to 1; households slightly above the limit have an MPC which is high but below 1; and households
with much higher wealth have a substantially lower MPC.

Figure 2 plots the impulse responses of aggregate variables to a 1 standard deviation TFP shock εt.
While these aggregate variables are not all explicitly included in the model, it is straightforward to compute
their impulse response functions by taking a first order approximation of aggregate variables as a function
of the endogenous functional variables. For example, aggregate consumption can be defined as

Ct =

∫
ct(w)µt(w)dw

and approximated as

Ct = ι
n∑
i=1

ct(wi)µt(wi)

Linearizing this expression, we have

Ĉt = ι

n∑
i=1

ĉt(wi)µt(wi) + ι

n∑
i=1

c(wi)µ̂t(wi)

where hats denote deviations from steady state and functions without a t subscript denote steady state
values.

Since our model features a distribution of households, we can also display how the whole distributions
of consumption and wealth respond to this shock. Figure 3 shows the ‘impulse response surface’ of the cash
on hand distribution to the TFP shock. That is, at each time t, this figure plots the deviation of µt(w)

from steady state µ(w) as a function of w. On impact, the distribution of cash on hand shifts to the right,
with a decline in the mass of the distribution near 2 (to the left of the steady state mean) and an increase
in the mass of the distribution near 4 (to the right of the steady state mean).

10Formally, the second shock has distribution

ϕ(z) =

(
2

z̄ − z

)
exp

 −1

1 −
(
−1 + 2 z−z

z̄−z

)2

 1

In

with support [z, z̄], where the numerical constant In ensures normalization. We set z = 0, z̄ = 2.
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Figure 2. Impulse response of aggregate variables to a unit standard deviation increase in TFP. All figures show percentage
deviations from steady state.

We compute the impulse response surface of the distribution of consumption as follows. Define a grid
for consumption, {c1, ..., cm}. Approximate the mass of households in bin j at time t as

ι

n∑
i=1

1(cj < ct(wi) ≤ cj+1)µt(wi)

where ct(wi) is approximated as c(wi)+ ĉt(wi) and µt(wi) is approximated as µ(wi)+µct(wi). Figure 4 plots
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Figure 3. Impulse response of the distribution of cash on hand to an increase in TFP

the deviation of this object from its steady state value. While the mass of the consumption distribution
shifts to the right, the shift is smaller than the shift in the cash on hand distribution.

Table 1 reports the time our algorithm takes to solve for steady state, compute derivatives and perform
generalized Schur decomposition, for various numbers of cash on hand grid points n and with both analytical
and automatic differentiation.11 Using analytical derivatives, the slowest part of the code is the computation
of steady state. Automatic differentiation takes substantially longer, especially for larger numbers of grid
points.

11These computations were performed on a Windows machine with an Intel Core i7-7600U CPU 2.80 GHz processor with
4 cores and 16 GB of RAM running Windows 10 Enterprise.
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Figure 4. Impulse response of the distribution of consumption to an increase in TFP

Table 1
Run time (seconds)

Analytical derivatives Automatic differentiation
n 80 160 320 80 160 320

steady state 2.3 9.4 35.8 2.2 8.3 33.0
derivatives 0.5 2.9 7.4 73.8 367.6 2313.6

Schur decomposition 0.3 2.4 19.9 0.3 2.2 20.3
Total 3.4 15.1 63.4 76.6 378.4 2367.8

6 Conclusion

In this paper we have described how perturbation methods, similar to those used to solve representative
agent DSGE models, can be applied to solve a model with both aggregate and idiosyncratic risk and
a continuum of agents. While the method was described in a variant of the Krusell and Smith (1998)

19



economy, it can easily be applied to a broader class of heterogeneous agent models.
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Appendix

A Functional Derivatives

In this appendix we report the derivatives of our discretized functional equations. For convenience, we
repeat the functional equations:

`t(wi) = βEt

R(Zt+1,Kt+1)ι
n∑
j=1

ct+1(wj)
−γ

ω(Zt+1,Kt+1)
g

(
wj −R(Zt+1,Kt+1)(wi − ct(wi))

ω(Zt,Kt)

) (21)

µt(wj) = ι
n∑
i=1

1

ω(Zt,Kt)
g

(
wj −R(Zt,Kt)(wi − Lct(wi))

ω(Zt,Kt)

)
Lµt(wi) (22)

Lµt+1(wi) = µt(wi), i = 1, ..., n (23)

L`t+1(wi) = `t(wi), i = 1, ..., n (24)

Kt+1 = ι
n∑
i=1

µt(wi)(wi − ct(wi)) (25)

lnZt = ρZ lnZt−1 + σεt (26)

In what follows, hats denote deviations from steady state values. The linearized Euler equation (21) is1 + βRι

n∑
j=1

c(wj)
−γ

ω
g′
(
wj −R(wi − c(wi))

ω

)
R

γω
1(`(wj)

−1/γ < wj)

 ˆ̀
t(wi)

=

βι n∑
j=1

c(wj)
−γ

ω

(
g

(
wj −R(wi − c(wi))

ω

)
+ g′

(
wj −R(wi − c(wi))

ω

)
wi − c(wi)

ω

) (RZEtẐt+1 +RKK̂t+1)

+βRι
n∑
j=1

1

ω
1(`(wj)

−1/γ < wj)g

(
wj −R(wi − c(wi))

ω

)
ˆ̀
t+1(wj)

−

βRι n∑
j=1

c(wj)
−γ

ω2
g

(
wj −R(wi − c(wi))

ω

) (ωZEtẐt+1 + ωKK̂t+1)

−

βRι n∑
j=1

c(wj)
−γ

ω3
+ g′

(
wj −R(wi − c(wi))

ω

)
(wj −R(wi − c(wi)))

 (ωZEtẐt+1 + ωKK̂t+1)

where RZ , RK , ωZ , ωK denote the derivatives of the factor prices (7) and (8) with respect to their arguments.
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The linearized Kolmogorov forward equation (22) is

µ̂t(wj) = −

[
ι
n∑
i=1

1

ω2
g′
(
wj −R(wi − c(wi))

ω

)
(wi − c(wi))µ(wi)

]
(RZẐt +RKK̂t)

−

[
ι
n∑
i=1

µ(wi)

ω2

(
g

(
wj −R(wi − c(wi))

ω

)
+ g′

(
wj −R(wi − c(wi))

ω

)
wi − c(wi)

ω

)]
(ωZẐt + ωKK̂t)

−ι
n∑
i=1

1

ω2
g′
(
wj −R(wi − c(wi))

ω

)
Rµ(wi)

1

γ
`(wi)

− 1
γ
−1

1(`(wj)
−1/γ < wj)L̂`t(wi)

+ι
n∑
i=1

1

ω
g

(
wj −R(wi − c(wi))

ω

)
L̂µt(wi)

The remaining linearized equations are:

L̂µt+1(wi) = µ̂t(wi)

L̂`t+1(wi) = ̂̀
t(wi)

K̂t+1 = ι
n∑
i=1

[µ̂t(wi)(wi − c(wi)) +
1

γ
µ(wi)`(wi)

− 1
γ
−1

1(`(wj)
−1/γ < wj)ˆ̀

t(wi)]

EtẐt+1 = ρZẐt

B Diagnostic Criteria

While the conditions in Condition (1) regarding continuity and stability of the solution with respect to the
approximated operators are properties of the exact model and cannot in general be verified analytically,
under certain conditions the values of the properties which must be checked are consistently approximable,
and so can be checked numerically by diagnostic criteria which can asymptotically detect any violation.
In particular, they are properties of the spectrum of the operator pair (A,B), which can be approximated
consistently by the spectrum of (Â, B̂) := (Ãm+Ã⊥, B̃m+B̃⊥), where (Ã⊥, B̃⊥) are additional components
of the functional derivatives orthogonal to the finite space of histograms spanned by the original represen-
tations as defined in Childers (2018b), which can be calculated analytically, though in practice do not need
to be computed for any of the results in the body of this paper. This permits a set of tests which, for a
subset of models, have power to reject the validity of the criterion. If any of these tests fails, one should
treat the results as suspicious. The absence of a warning, however, cannot be interpreted as indicating
validity. Let ζn be an upper bound on the operator norm convergence rate (Â, B̂) → (A,B); this can be
guaranteed without reference to Condition (1).

Criterion 5. Spectral Gap: Let σ(Â+Ã⊥, B̂+B̃⊥) denote the generalized spectrum of (Â, B̂), Γ the complex
unit circle, and d(λ, S) for S ⊂ C∞ the minimum distance in the extended complex plane between a point
and a set. Let γn be a bound on χ(σ(Â+ Ã⊥, B̂ + B̃⊥), σ(A,B)) the maximum minimum distance between
the spectra of the two operator pairs, which is guaranteed to exist by continuity of the generalized spectrum
(Stewart and Sun (1990) Ch VI). Choose εn ↘ 0 at a rate such that εn

γn
→ ∞. Define zn = inf{d(λ,Γ) :

λ ∈ σ(Â, B̂)}. Reject Condition (1)(i) if zn < εn.
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Claim. If σ(A,B) ∩ Γ 6= ∅, ∃N such that ∀n > N , Criterion (5) rejects. Further, suppose Condition (1)(i)
is true, then ∃N such that ∀n > N , Criterion (5) does not reject.

Essentially, this says that whether there exists an eigenvalue in the unit circle can be tested by extending
out the circle slightly. For close enough approximations, the eigenvalues of the true and approximate
derivatives will be close enough to distinguish whether there is an eigenvalue in a small neighborhood
of this value. By letting this neighborhood contract at a rate slower than the convergence rate of the
operators themselves, one can ensure that any element of the spectrum which is truly bounded away
from the unit circle will eventually be detected as such. Note that by orthogonality and diagonality,
σ(Â+Ã⊥, B̂+B̃⊥) = σ(Â, B̂)∪σ(Ã⊥, B̃⊥), so one can construct the spectra separately for each component
when performing the test.

If Criterion (5) fails, then one should not proceed to the other two; the other conditions will not even
be well defined.

If Criterion (5) does not reject, one would also like to be able to verify Condition (1)(ii). Unfortunately,
this condition is only testable in one direction, in the sense that we can construct a test which, if the criterion
is true, will not reject, but may not have power to detect all possible violations of the condition. As a result,
a rejection should be taken as an absolute sign that there is an issue with the model, but a failure to reject
should not be interpreted as an indication that the condition actually holds. The content of the condition
is the claim that a certain constant is bounded away from 0; the test constructs an approximation of the
constant. In cases where the condition holds, this estimator is consistent, and this constant will converge
to its true value, above 0. However, if the condition does not hold, the estimate need not be consistent,
and so while a small value, which could never occur if the truth were bounded away from 0, is a clear sign
of failure, failure may also result in values which are far from 0.

Criterion 6. Dif Constant. Let (Ŝ11, T̂11), (Ŝ22, T̂22), and (S11, T11), (S22, T22), denote the components
inside and outside the unit circle, respectively of the generalized Schur decomposition of (Â, B̂) and (A,B),
respectively, and let (S̃⊥11, T̃

⊥
11) and (S̃⊥22, T̃

⊥
22) denote the corresponding subcomponent of the decomposition of

(Ã⊥, B̃⊥). Letting ‖(Q,P )‖B = max({‖Q‖op , ‖P‖op} T (P,Q) := (QT11 − T22P,QS11 − S22P ), T̂ (P,Q) :=

(Q(T̂11 + T̃⊥11) − (T̂22 + T̃⊥22)P,Q(Ŝ11 + S̃⊥11) − (Ŝ22 + S̃⊥22)P ). Define δ =
∥∥T−1

∥∥−1

B , which is the true dif

constant, and define δ̂n =
∥∥∥T̂−1

∥∥∥−1

B
.

Choose εn ↘ 0 at a rate such that εn
ζn
→∞. Reject Condition (1)(ii) if δ̂n < εn.

Claim. Suppose Conditions (1)(i) and (1)(ii) are true. If δ > 0, ∃N such that ∀n > N , Criterion (6) does
not reject.

Note that no claim is made regarding what happens when Condition (1)(ii) is false, in which case δ = 0

or is not defined. However, because in the case where the condition is true, it will not reject, rejection must
be due to a failure of the condition. If this test fails, one should assume that the solution is not reliable,
and not proceed to the next test. Beyond rejection or lack thereof, the value of this test statistic may be
informative as well. Following Childers (2018b) Appendix B Thm 3, if γ is the operator norm error in the
approximation of the equilibrium conditions, can be bounded using standard function approximation tools,
then the operator norm error in the solution is bounded by a term which asymptotes to 2γ

δ . This means
that a consistent approximation of δ can provide a bound the constant term in the solution error. If this
value is small, not only might it suggest the possibility that conditions for consistency do not hold; it also
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suggests that even if they do, the quality of the approximation may be poor. So, small values of the test
statistic which do not meet the threshold for rejection may also be indicators of low solution quality.

While a test which does not have power to reject in all cases when the solution fails may not provide
full confidence in results, there may be reason not to worry. In the case where a model is finite dimensional,
whenever Condition (1)(i) holds, Condition (1)(ii) also holds (Stewart and Sun (1990) Thm VI.1.11). The
same is true for operator pairs which are diagonalizable, or for which either A or B is invertible, regardless of
dimension. For such models, the condition is redundant and need not be tested separately from Condition
(1)(i). It is possible that a version of this result also holds in the infinite dimensional case, at least for
operator pairs, like those to which our method applies, which are approximately diagonal. While neither
confirmation nor counterexamples are yet known to the authors regarding this conjecture, if it were to hold,
then it would be sufficient to test Condition (1)(i) only, which can be done consistently. If this were true,
the results of Criterion (6) could still be interpreted along the lines in Remark (B), but then no additional
test would be needed beyond that of Criterion (5) to test the condition.

While Condition (1)(i) is consistently testable directly in any case in which the derivatives can be shown
to converge, Condition (1)(iii), which requires the invertibility of a map between the space of jump variables
and the space of stable eigenvalues, and so effectively tests for existence and uniqueness of equilibria, is
consistently testable only under certain conditions. First, Condition (1)(i) and (1)(ii) must hold: this
allows consistent approximation of the operator which must be inverted. Second, the component of the
approximation which lies orthogonal to the span of the basis functions used, defined in terms of (Ã⊥, B̃⊥)

only, must be well behaved, in the sense that its inverse must be bounded away from 0. This allows avoiding
the case where the inverse we would like to verify exists is ill posed. Canay et al. (2013) show that in such
a situation, no consistent test of invertibility can be constructed. Here, because we work with a potentially
broader set of operators, in some cases informative tests can be constructed. Fortunately, this condition
can be verified analytically, and in the Krusell Smith model defined here does not hold, so in this model
the test is consistent, at least if the other two conditions hold.

Criterion 7. Stable spectrum isomorphism: Choose εn ↘ 0 at a rate such that εn
ζn
→∞. Let Û22 and U22

denote the component of the generalized Schur decomposition of (Â, B̂) and (A,B), respectively correspond-
ing to the component of the spectrum outside the unit circle acting on the space of jump variables y, and

let Ũ⊥22 denote the corresponding subcomponent of the decomposition of (Ã⊥, B̃⊥). Suppose
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
> 0.

Define zn =
∥∥∥Û−1

22

∥∥∥−1

op
. Reject Condition (1)(iii) if zn < εn.

Claim. Suppose Conditions (1)(i) and (1)(ii) are true. If
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
> 0 and U22 does not have bounded

inverse. Then ∃N such that ∀n > N , Criterion (7) rejects. Further, if
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
> 0 and

∥∥U−1
22

∥∥−1

op
6= 0,

then ∃N such that ∀n > N , Criterion (7) does not reject.

Note: the condition and claim make no statements about what happens when
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
= 0 or does

not exist. In this case, no information is conveyed by the event zn < εn; this relates to the impossibility
result for testing invertibility of certain operators shown by Canay et al. (2013).

B.1 Proofs of Claims

Proof. of claim regarding Criterion (5)
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By assumption, χ(σ(Â + Ã⊥, B̂ + B̃⊥), σ(A,B)) ≤ γn for large enough n so by continuity of the
generalized spectrum , ∃N1 and constant C such that ∀n > N1 sup

λ∈σ(Â+Ã⊥,B̂+B̃⊥)

inf d(λ, σ(A,B)) ≤ Cγn.

If Condition (1)(i) is true, then, by the fact that the resolvent set is open, inf d(σ(A,B),Γ) = δ > 0.
By the triangle inequality, |zn − δ| ≤ Cγn Then zn − εn ≥ δ − Cγn − εn → δ > 0. So, ∃N such that

∀n ≥ N , the test does not reject.
If Condition (1)(i) is false, then, inf d(σ(A,B),Γ) = 0, so by the triangle inequality, zn ≤ Cγn Then

zn−εn ≤ Cγn−εn. By assumption, εnζn →∞, so, for any C, there exists N such that ∀n ≥ N , Cγn−εn ≤ 0

and the test rejects.

Proof. of claim regarding Criterion (6)
Suppose Condition (1)(i) is true and

∥∥T−1
∥∥−1

B = δ > 0. Then, by Childers (2018b) Appendix B Thm
4,

max{
∥∥∥T̂11 + T̃⊥11 − T11

∥∥∥
op
,
∥∥∥T̂22 + T̃⊥22 − T22

∥∥∥
op
,
∥∥∥Ŝ11 + S̃⊥11 − S11

∥∥∥
op
,
∥∥∥Ŝ22 + S̃⊥22 − S22

∥∥∥
op
} ≤ Cζn for

n ≥ N1, for some N1.
As a result, for n ≥ N1∥∥∥T̂ (P,Q)− T (P,Q)

∥∥∥
B

= max{
∥∥∥Q(T̂11 + T̃⊥11 − T11)− (T̂22 + T̃⊥22 − T22)P

∥∥∥
op
,∥∥∥Q(Ŝ11 + S̃⊥11 − S11)− (Ŝ22 + S̃⊥22 − S22)P )

∥∥∥
op
}

≤ Cζn ‖(P,Q)‖B

So by
∥∥T−1

∥∥−1

B = δ > 0, there exists n large enough such that
∥∥∥T̂−1

∥∥∥
B
exists, and

∣∣∣∣∥∥∥T̂−1
∥∥∥−1

B
−
∥∥T−1

∥∥−1

B

∣∣∣∣ ≤ 1∥∥∥T̂−1
∥∥∥
B
‖T−1‖B

∣∣∣∥∥∥T̂−1
∥∥∥
B
−
∥∥T−1

∥∥
B

∣∣∣
≤ 2∥∥∥T̂−1

∥∥∥
B
‖T−1‖B

∥∥∥T̂ (P,Q)− T (P,Q)
∥∥∥
B

≤ C2ζn

for some C2. As a result, for δ̂n − εn ≥ δ − C2ζn − εn → δ > 0. So, ∃N such that for n ≥ N , the test
does not reject.

Proof. of claim regarding Criterion (7).

Suppose Conditions (1)(i) and (1)(ii) are true and
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
= b > 0 Then, by Childers (2018b)

Appendix B Thm 4, ∃N1 s.t. for n ≥ N1∥∥∥Û22 + Ũ⊥22 − U22

∥∥∥
op
≤ Cζn

Suppose
∥∥U−1

22

∥∥−1

op
= d > 0. Then for large enough n, Û22 + Ũ⊥22 is invertible and for some C∥∥∥(Û22 + Ũ⊥22)−1 − U−1

22

∥∥∥−1

op
≤ Cζn
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By orthogonality
(Û22 + Ũ⊥22)−1 = Û−1

22 + Ũ⊥−1
22

and ∥∥∥(Û22 + Ũ⊥22)−1
∥∥∥−1

op
≤ min{

∥∥∥Û−1
22

∥∥∥−1

op
,
∥∥∥Ũ⊥−1

22

∥∥∥−1

op
}

So by the triangle inequality

zn − εn ≥
∥∥∥(Û22 + Ũ⊥22)−1

∥∥∥−1

op
− εn → d > 0

and so ∃N st ∀n ≥ N , the test does not reject.
Next suppose U22 does not have bounded inverse.
Then for n large, it must be that

∥∥∥(Û22 + Ũ⊥22)−1
∥∥∥
op
≥ 1

Cζn
, and

∥∥∥Û−1
22

∥∥∥
op
≥ 1

Cζn
− b . So

zn − εn ≤
1

1
Cζn
− b
− εn

because εn
ζn
↗∞, there must exist N such that for all n ≥ N the above term is less than 0, and so the test

rejects.

C Proofs of Propositions

To formalize the claim that the rescaling may be ignored provided in Section 4, we first demonstrate
an auxiliary result, which shows that the procedure described in this paper produces results numerically
equivalent to those of the algorithm in Childers (2018a), which includes as an additional step procedures
to transform from grid points to coefficients before applying the rational expectations algorithm to the
approximate model. The use of a histogram representation, for which the map from grid points to coefficients
is simply an identity matrix rescaled by a constant, does no more than a rescaling, which is undone by the
rational expectations solver, at least if the results are then placed on a consistent scale.

8. Consider a model satisfying the conditions of Theorem (11) in Childers (2018a), using tensor product
histogram approximations as interpolation schemes. Then, the guarantees of Theorem (11) are preserved
(in a sense defined in the proof) if in Algorithm (3) in Childers (2018a), step 5 is replaced with step 5′

defined below.

Algorithm. Step 5′: ∀` = 1 . . . d2, ∀j = 1 . . . 2d2, represent the (`, j) block of the equilibrium equations
as F `−→g j(out) + F `−→g j(in)

(that is, as simply the functional derivatives of the equation with respect to the grid
points)

Proof. of lemma (8)
This result applies from an application of Childers (2018a) Lemma (28) to show that the representation

in Step 5′ produces solution equivalent to the representation in Step 5 of the algorithm in Childers (2018a).
Consider a block (`, j) of form (F `−→g

j(p`(out))
)−1F `−→g j(out) +M[`o](F `−→g

j(p`(out))
)−1F `−→g j(in)

(Π[j])−1M∗[j] or of form

F `−→g j(out) +M[`o]F `−→g j(in)
(Π[j])−1M∗[j] depending on whether Childers (2018a) Condition (5)(b)(ii) or (5)(b)(i)
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is satisfied for row `. Under a histogram approximation, M[`o] =

√
K[`o]√
c`o

IK[`o]
, M[j] =

√
K[j]√
cj
IK[j]

, and Π[j] =
cj
K[j]

IK[j]
, where K[j] and K[`o] are the cardinality of the set of grid points over argument sets [j] and [`o],

respectively and cj and c`o are the width of the interval spanned by the corresponding functions. By Lemma
(28), multiplying a row by an invertible matrix does not change the solution, and so after multiplying each
row ` satisfying Condition (5)(b)(ii) by F `−→g

j(p`(out))
, each block (`, j) of the algorithm using Step 5 is given

by F `−→g j(out) +

√
K[`o]cj√
K[j]c`o

F `−→g j(in)
. Applying again Lemma (28), multiplying each row ` by

√
c`0√
K[`o]

IK[`o]
and each

column j by
√
K[j]√
cj
IK[j]

produces a solution for which hx and gx becomes W−1
x hxWx and W−1

y gxWy, where

W is
√
K[j]√
cj
IK[j]

on the (j, j) block and 0 elsewhere, and Wx and Wy denote the submatrices corresponding

to x and y variables. Further, note that F `−→g j(out) is nonzero only if
√
K[j]√
cj

=

√
K[`o]√
c`o

for any model satisfying
the conditions, as otherwise identity maps are not defined between these spaces. As a result, after these
transformations, the (`, j) block is of form F `−→g j(out) +F `−→g j(in)

exactly as in Step 5′. So, the solutions using
either representation are equivalent up to multiplication by components of matrixW , which simply rescales
each grid point according to the dimension of the space.

Proof. of Lemma 1,
The proof of this lemma is nearly identical to the first part of the proof of Childers (2018a) Lemma (15),

and so only the differences will be described. Childers (2018a) Lemma (15) first proceeds by verifying the sup
norm convergence of the kernel function based on the properties of the approximation of the steady state,
smoothness properties of the derivatives, and the convergence properties of the transformed interpolation
scheme. the only difference here is that the discontinuous function in this model takes a different functional
form, viz. 1{`(w)−1/γ < w}.

In order to define a transformation such that the boundary of the transformed histogram coincides with
the location w∗ of the discontinuity, note that by the assumed uniform convergence of `(wi) at rate O(n−1)

and either the monotonicity or an o(n−1) convergence rate and the monotonicity of the true `∗(w) which
follows from standard results for consumption savings problems with fixed interest rate, for large enough n
there exists a threshold grid point such that 1{`(wi)−1/γ < wi} switches, and so one may construct a map
τn(w) which stretches this grid point to the true boundary w∗ and the transformed histogram interpolation
representation ˜̀(w) using this map satisfies 1{`(w)

− 1
γ < w} = 1{˜̀(w)

− 1
γ < w}.

Using the existence and accuracy properties of such a map following the argument in Childers (2018a)
Lemma (15) ensures the convergence of the representation of the derivatives in terms of at convergence rate
O(n−1/4) over the space of transformed histograms of order n, or equivalently operator norm convergence
to (A,B)− (Ã⊥, B̃⊥) , where (Ã⊥, B̃⊥) described in Childers (2018b), can be computed analytically from
the derivatives and extend the representation from the space of functions represented by a finite set of basis
functions to the component of the full function spacce orthogonal to this space.

An application of the result bounding the error incurred by mapping the transformed histogram repre-
sentation to the uniform histogram representation, Lemma (25) in Childers (2018a), obtain

sup
{(x,y)∈Λαx×Λαy :‖(x,y)‖Hx×Hy=1}

max{
∥∥∥[P ∗nÃ

mPn − (A− Ã⊥)](x, y)
∥∥∥
Hx×Hy

,
∥∥∥[P ∗nB̃

mPn − (B − B̃⊥)](x, y)
∥∥∥
Hx×Hy

}

≤ Cn−
1
4
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Finally, steps analogous to those of the proof of Corollary (26) of Childers (2018a) demonstrate that
sup

{(x,y)∈Λαx×Λαy :‖(x,y)‖Hx×Hy=1}
max{

∥∥∥Ã⊥(x, y)
∥∥∥
Hx×Hy

,
∥∥∥B̃⊥(x, y)

∥∥∥
Hx×Hy

} ≤ O(n−1/2) and so these terms can

be removed, proving the result.

Proof. of Propositions 3 and 4
By the proof of lemma 1, the representation of the functional derivatives from (Ãm, B̃m) in terms of

transformed histogram representation converges in operator norm at rate O(n−1/4). By Lemma (8) and
the invariance to left multiplaction, the algorithm produces solution matrices with operator representation
identical to that which would be produced by application to matrices (Ãm, B̃m). Therefore by the Con-
jecture, this procedure satisfies all the conditions of Childers (2018a) Theorem (11) and so converges in
operator norm to the true solution operator, minus a term corresponding to the component orthogonal to
the bases, which adds error of smaller order by the same reasoning as above. The convergence of the IRFs
follows directly from Childers (2018a) Corollary (26).
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