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Abstract

Many variables of interest to economists take the form of time varying distri-

butions or functions. This high dimensional ‘functional’ data can be interpreted

in the context of economic models with function valued endogenous variables,

but deriving the implications of these models requires solving a nonlinear system

for an infinite dimensional function of infinite dimensional objects. To overcome

this difficulty, I provide methods for characterizing and numerically approximat-

ing the equilibria of DSGE models with function valued variables by lineariza-

tion in function space and representation using basis functions. These methods

permit arbitrary infinite dimensional variation in the state variables, do not im-

pose exclusion restrictions on the relationship between variables or limit their

impact to a finite dimensional sufficient statistic, and come with demonstrable

guarantees of consistency and polynomial time computational complexity. I

demonstrate the applicability of the theory by providing an analytical charac-

terization and computing the solution to a dynamic model of trade, migration,

and economic geography.
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1 Introduction

In order to understand and evaluate the causes and consequences of economic het-
erogeneity, it is helpful to have an analytical framework in which the distribution
of heterogeneity can change over time and can both affect and be affected by other
variables. A perspective in which some of the endogenous variables of an economic
model are endogenous random functions allows distributions, as well as objects like
demand and supply curves or policy or value functions, to be treated as data. While
descriptive models and methods for function valued time series are undergoing rapid
development,1 interpreting this data requires formulating economic models capable of
generating the observed functional data and deriving their implications. For models
featuring forward looking decision making and endogenous aggregate variables, this
derivation typically requires solving a computationally intractable infinite dimensional
system of nonlinear expectational difference equations. Although heuristic or strongly
model dependent methods have been proposed, to date there appears to be no general
purpose algorithm which provides a formal guarantee of even an approximate solution
to rational expectations models with stochastic function valued states.2

This paper provides such an algorithm. In particular, it demonstrates how the
equilibrium conditions for a general class of function valued rational expectations
models, including but not limited to heterogeneous agent dynamic stochastic gen-
eral equilibrium models, can be linearized directly in function space, with solutions
characterized locally by a functional linear process, a tractable empirical model for
function valued time series (Bosq, 2000). Construction of a local solution requires
introducing a novel infinite dimensional extension of the generalized Schur decom-
position used to solve finite dimensional rational expectations models (Klein, 2000)
and developing perturbation theory for this object, which may be contributions of
independent mathematical interest. The solution can be implemented numerically by
a procedure based on finite dimensional projection approximations which converges

1See Horváth & Kokoszka (2012); Bosq (2000); Morris (2014); Ferraty & Romain (2011) for sur-
veys of the rapidly expanding field of functional data analysis, which focuses on modeling, estimation,
and inference for series of observed or estimated functions.

2Models and algorithms with a distribution of agents were deveoped Bewley (1986), Huggett
(1993) and Aiyagari (1994) in the time invariant case and Krusell & Smith (1998) with aggregate
uncertainty. For surveys of models and methods see Krusell & Smith (2006); Heathcote et al. (2009);
Guvenen (2011); Ljungqvist & Sargent (2004) and the Journal of Economic Dynamics and Control

symposium on the topic (Den Haan, 2010). A noteworthy exception with computational guarantees
in a related class of models is the recent work of Pröhl (2017).
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to the local solution under mild regularity conditions. I analyze in detail a particular
approximation algorithm in this class, a wavelet transform based procedure which
yields an approximate solution accurate to within any desired degree in polynomial
time.

To demonstrate and evaluate the method, I develop a dynamic spatial model of
trade, migration, and economic geography which introduces forward looking migra-
tion decisions and spatial shocks into the economic geography model of Krugman
(1996). In the model, the spatial distribution of population, wages, and welfare over
a continuum of locations is allowed to vary nonparametrically in response to persistent
spatially correlated shocks to the desirability of different locations. Due to the spatial
structure of trade and production, the spatial distribution of economic activity is a
determined by the distribution of population across locations, while the distribution
of population is determined by forward looking migration decisions which take into
account the expected distribution of economic activity. In this setting, the relation-
ship between these two functions is not easily reduced to low-dimensional summaries
or split into “local” and “global” components, but is well characterized by a functional
linear model representation. By exploiting an analytical characterization of the so-
lution to certain parameterizations of this model, the speed and numerical accuracy
of the algorithm are evaluated in practice and shown to be in line with the strong
theoretical guarantees.

The core idea behind the solution method is functional linearization. By taking
the functional derivatives of the equations defining an equilibrium, it is possible to
construct a system of equations which can be solved for the functional derivatives at a
fixed point in function space of the policy operator, a map from function valued states
to function valued endogenous variables. In this way, it is possible to recover local
information about the solutions, which can then be used to construct a functional
Taylor expansion of the policy operator which provides an accurate solution for all
functions not too far from the function around which the model is linearized.

Related perturbation methods for heterogeneous agent models have previously
been developed: see Chung (2007), Reiter (2009), Winberry (2014, 2016), Veracierto
(2014), Boppart et al. (2017), and Ahn et al. (2017) for methods and discussion of the
advantages of this class of procedures. While these approaches are similar in spirit and
practice, none works directly in the space of functions as the approach advocated here
does; this complementary perspective allows for development of theoretical accuracy
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guarantees and precise delineation of regularity conditions that may have broader
applicability to this entire class of methods.

Constructing this linear approximation of the policy operators from the functional
derivatives of the model equations requires solving a system of quadratic equations in
linear operators. In the case of linear or linearized finite dimensional rational expec-
tations models, the analogous quadratic equation can be solved using matrix decom-
position. In particular, Klein (2000) demonstrated that a solution can be found using
the generalized Schur (QZ) decomposition of the matrices of derivatives. In infinite
dimensions, an analogous decomposition appears to be absent from the literature, in
part because the finite dimensional version is constructed by induction using eigen-
values, which may fail to exist or have countable cardinality in infinite dimensional
space. Nevertheless, it is possible to construct an analogous decomposition by other
methods, described in detail in Appendix A. Under the conditions required for such
a decomposition to exist and under further conditions analogous to the well known
criterion of Blanchard & Kahn (1980) ensuring that the model has a unique linear
solution, it is possible to solve for the first order expansion of the policy operator.

Calculating this local solution numerically requires representing it in a form that
can be evaluated on a computer. A standard procedure for reducing problems in
function spaces to finite dimensional objects is to approximate the functions by pro-
jecting the space onto the span of a set of basis functions, such as wavelets, splines, or
trigonometric or Chebyshev polynomials and represent operators on function space
in terms of their behavior with respect to the basis functions. These approaches are
referred to as spectral methods and are commonly applied to solve integral and differ-
ential equations: see Boyd (2000), Chatelin (2011). If any function one is interested
in can be represented reasonably accurately by a finite set of basis functions, the
loss from the use of a finite set of functions may be small. The caveat here is that,
unlike in classical function approximation problems where the class of functions is
known, ‘the set of functions one is interested in’ is not explicitly assumed, but must
be determined by the properties of the model.

The issue that projection methods must overcome is that the class of functions well
approximated by finite projection is in fact small in the class of all possible functions
which could conceivably arise endogenously as outcomes of an implicitly defined model
with function valued variables. To handle this concern, conditions must be imposed
on the model which ensure both that the solutions themselves are continuous with
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respect to projection approximations and that the solutions are operators which have
the property that they map functions which are well approximated by basis functions
to functions which are well approximated by basis functions. Continuity properties
of the generalized Schur decomposition are derived in Appendix B, and a set of
restrictions on the model which ensure that basis function approximation is valid is
described in Section 5.1.

While the precise statements of the sufficient conditions on a model for projection
to be valid do impose nontrivial mathematical regularity on the class of applicable
models, the conditions themselves are economically mild. Essentially, they rule out
certain kinds of maps which take well behaved smooth functions as input and produce
jagged, noisy, or discontinuous functions as output. Many economic models can be
represented in forms which satisfy these conditions, and many of those that do not can
be modified slightly so that they do, for example by smoothing discontinuous cost
functions or adding a small amount of noise to ensure that a distribution remains
smooth.

Provided that the regularity conditions hold, implementing the solution is simple
and fast. The linearized equilibrium equations can be approximated by projection,
either analytically or numerically by quadrature, to produce two pairs of matrices,
to which one can apply the finite dimensional QZ decomposition, solve, and combine
to form a matrix approximation to the infinite dimensional policy operator. The
accuracy of the approximation is then determined by the number of basis functions
used and the smoothness of the functions that they are used to approximate. If all
the equilibrium conditions are defined using Hölder continuous functions, wavelets
provide the smallest and fastest feasible representation. Implementing approximate
projection using the Discrete Wavelet Transform, the method converges in a number
of operations polynomial in the degree of accuracy of the solution and in numerical
experiments gives demonstrably accurate results at high speed. High level conditions
are also provided for more general procedures, including for the case when parts of
the model are estimated directly from data.

Outline

The structure of this paper is as follows. I describe the setting of rational expectations
models with function valued states in Section 2. Section 3 describes an illustrative
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application, a dynamic model of trade, migration and economic geography. Section
4 characterizes and gives necessary conditions for the existence of solution to the lin-
earized model, while Section 5 introduces projection algorithms for calculating this
solution and describes conditions for their consistency. Section 6 illustrates the pro-
cedure by applying it to solve the geography model from Section 3 and evaluates its
performance by comparing to an analytical characterization of the solution. Section
7 concludes. Several appendices contain additional results: Appendix A describes
conditions for existence of an infinite dimensional version of the generalized Schur
decomposition and Appendix B gives conditions under which it is continuous. Ap-
pendix C covers supplementary results about functional linearization and Appendix
D contains additional details and results of the geography model. Appendix E pro-
vides high level sufficient conditions for the existence of recursive equilibria in function
valued dynamic models. Appendix F collects all proofs, and Appendix G contains
additional figures.

2 Function Valued Models and Linearization in Func-

tion Space

The class of dynamic economic models which may be placed in a framework amenable
to linearization in function space is large. Many economic models define objects of
interest, explicitly or implicitly, as functions which solve a set of equations represent-
ing conditions such as optimization, market clearing, self-consistency, feasibility, or
accounting identities. For example, a consumption function is often represented im-
plicitly as the solution to an Euler equation, or a value function as the fixed point of
a Bellman operator. Most trivially, when economic variables take values in Euclidean
space, all of the theory developed in this paper will continue to apply.

To formalize the linearization procedure and to provide a framework which per-
mits both variables which are predetermined and those determined by forward looking
expectations, I provide a notational framework for a general class of models. The no-
tation and structure to be used follows closely that of Schmitt-Grohe & Uribe (2004),
who described perturbation procedures for finite dimensional rational expectations
models, with the difference that I now allow state variables to be elements of an infi-
nite dimensional space. I consider in particular models with a recursive representation

6



described by a set of equilibrium conditions which may be expressed as differentiable
operators between separable Banach spaces. A solution to the model defines a re-
cursive law of motion for the endogenous variables in the system in terms of the
exogenous variables and past values of endogenous variables. The law is determined
implicitly as the solution of a nonlinear expectational difference equation

EF (x, y, x0, y0, �) = 0B2 (2.1)

where x is a set of predetermined variables in Banach space Bx with norm k.kB
x

,
written as k.k when the space is clear from context, y 2 By is a set of endogenous
or ‘jump’ variables, a superscript x0, y0 indicates the values of these elements in the
next time period t + 1 and the absence thereof indicates values of variables known
at time t, � 2 R is a scalar scaling parameter determining the size of fluctuations.
The function F (x, y, x0, y0, �) : Bx ⇥ By ⇥ Bx ⇥ By ⇥ R ! B2 , which I refer to as
the equilibrium operator, is a map taking the values of the state variables today and
tomorrow and the scaling parameter to a Banach space B2, and E is the (Bochner)
expectation with respect to the law of motion induced by the solution of the model,
to be made explicit shortly.3

Uncertainty in the model is incorporated solely via exogenous Banach random
elements z0 on probability space (Bz,⌃z, µz

), which enter into the exogenous law
of motion generating a subset of the predetermined variables x2, with (x1, x2) 2
Bx1 ⇥ Bx2 = Bx, by the equation x0

2 = h2(x2) + �z0 for h2 : Bx2 ! Bx2 a given
function describing the dependence of future values of x2 on current values. The
shocks z0 are normalized to have zero mean E[z0] = 0. As a result, F contains as one
subcomponent the formula x0

2 � h2(x2).
While this form may appear somewhat restrictive, many apparent limitations

may be addressed through inclusion of appropriate auxiliary variables and equations.
For example, while only variables in two time periods are included, by including
lags and leads as separate variables, systems dependent on more time periods may
be brought into this recursive form. Likewise, while function valued uncertainty z0

is restricted to enter additively in the model, nonlinear effects of shocks may be
3The Bochner integral of a B-valued random variable g on probability space (⌦,⌃, µ) is given

by an element Eg 2 B defined for simple functions g =

P
n

i=1 fi{! 2 A

i

} for f

i

in B, A
i

2 ⌃ as
Eg =

P
n

i=1 fiµ[Ai

] and for more general random variables g as the strong limit of the Bochner
integral of a sequence of simple functions g

n

such that µ kg � g

n

kB ! 0. A measurable random
element is Bochner integrable if and only if µkgkB <1.
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included by adding an additional predetermined variable which is a function of the
shock: e.g., if zk enters nonlinearly in F , replacing zk with x2k and incorporating the
equation x0

2k = Ez0k+�(z0k�Ez0k) can recover the nonlinear effects. Beyond imposing a
recursive structure, the form provides a consistent notation but imposes only modest
restrictions on the form of the economic model.

A (recursive) solution is given by a set of policy operators which solve the equi-
librium equation for any value of the initial predetermined state x and the exogenous
shocks z. In each period, y is given by the endogenously determined map g(x, �) from
predetermined state x to endogenous state y (or x0 to y0), and x0 is given by the tran-
sition operator h(x, �)+�⌘z0 mapping the current predetermined state and shocks to
next period’s predetermined state, where ⌘ denotes the imbedding Bx2 ! Bx, i.e. for
z 2 Bx2 , ⌘[z] = (0, z) 2 Bx1 ⇥ Bx2 , and h(x, �) = (h1(x, �), h2(x2)) includes both an
endogenously determined transition component h1 and an exogenous component h2.

Definition 1. A recursive solution is a set of maps g(x, �) : Bx⇥R! By, h1(x, �) :

Bx ⇥ R! Bx1 , h2(x2) : Bx2 ! Bx2 such that the equilibrium conditions hold:

EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0, �), �) = 0B2 (2.2)

for all x, �, where the expectation E may now be defined, for each x, � as the
expectation with respect to the pushforward measure of µz on B2 generated by the
function F (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0, �), �) : (x, z0, �) 2 Bx ⇥ Bx2 ⇥
R! B2 evaluated at fixed x, �.

In order to ensure computation of a stationary solution, the point around which
the model is linearized is a nonstochastic steady state, which allows construction of a
solution which is both local and recursive, by ensuring that the point around which
the rule is calculated is the same in all periods.

Definition 2. A nonstochastic steady state is a set of values (x⇤, y⇤) 2 Bx ⇥ By such
that when � = 0 and so function valued uncertainty disappears, F satisfies

F (x⇤, y⇤, x⇤, y⇤, 0) = 0

Many recursive models will have such a point, at which all aggregate variables
are unchanging over time. This is the equilibrium concept used in Bewley-Huggett-
Aiyagari models, in which the distribution of heterogeneity is given by an invariant
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distribution generated by individual decision rules, and its existence can often be guar-
anteed by fixed point theorem. It may also be calculated consistently by standard
methods, such as the iterative algorithms proposed by Huggett (1993) and Aiyagari
(1994). In general, determining the nonstochastic steady state of a model involves
solving a functional equation, which will differ depending on the details of the model.
However, the problem involves determining only a single set of functions rather than
an operator valid for any function, and is often quite feasible using standard methods.
For example, in models where the decision rule is a function valued state variable,
recursive solutions are often available by dynamic programming, for which there are
many feasible approximation algorithms with geometric convergence. Calculation of
invariant distributions of Markov processes is also often achievable by iterative meth-
ods with geometric convergence. More broadly, in the absence of infinite dimensional
uncertainty, the problem usually reduces to a set of integral equations, for which a
broad variety of standard numerical integral equation methods may be used.

A linearized solution of the model is given by first order Taylor expansion of g(.)
and h(.) with respect to their arguments at the steady state. In order to solve for this,
g(.) and h(.) and the operator F : Bx⇥Bx⇥By⇥By ! B2 must be differentiable with
respect to their arguments. In Banach space, the appropriate notion of derivative for
linearization is (usually) the Fréchet derivative, which is defined analogously to the
Fréchet derivative in Euclidean space.4 If F (x) is an operator between Banach spaces
B1 ! B2, the Fréchet derivative, if it exists, is the continuous linear operator DF

satisfying

lim

khk1!0

kF (x+ h)� F (x)�DF [h]k2
khk1

= 0. (2.3)

In practice, calculation of Fréchet derivatives of Banach space-valued operators is
not difficult: they obey many of the standard rules of Euclidean-valued derivatives
including linearity, additivity, and the product rule, and many standard operators
have known derivatives: see e.g. Kesavan (2004). Most importantly, the Fréchet
derivative follows a version of the chain rule: for two Fréchet differentiable operators
F , G, D(F � G)[h] = DF [DG[h]]. Fréchet differentiability is strictly stronger than
directional, or Gateaux differentiability, which requires only the existence of a limit
in the direction of a fixed element h. As the Gateaux derivatives of F in any direction

4See Appendix C for modeling choices which may ensure Fréchet differentiability or weaker con-
ditions that can be used when it fails.
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h 2 B may be calculated as the scalar derivative d
d⌧
F (x + ⌧h) at ⌧ = 0 and must

coincide with the Fréchet derivative when the latter exists, the form of the Fréchet
derivative is easily determined. The Fréchet derivative preserves linear operators, so
integration, differentiation, multiplication by a function, and any composition thereof
have derivatives equal to themselves. A special class of operators which arises fre-
quently in economic models is the composition of one function with another, referred
to as a Nemytskii operator. Under appropriate boundedness, differentiability, and in-
tegrability conditions on f(s1, s2), the composition f(g(x), s2), viewed as a map from
the function g(.) of x to the function f(g(x), s2) of x, s2 is a Fréchet differentiable
function of g(.) at the point g⇤(.) with derivative fs1(g

⇤
(x), s2) · [h(.)]: that is, the

derivative is given by multiplication of the direction in which g changes by the partial
derivative of f with respect to the element with which it is composed (Kesavan, 2004).
In Banach space, Taylor’s theorem for Fréchet derivatives gives a linear approximation
of a differentiable operator F (x) : B1 ! B2 as F (x+ h) = F (x) +DF [h] + o(khk1).

It is important to contrast a Taylor expansion in function space with a local so-
lution for finite dimensional models: see Reiter (2009); Winberry (2016) for related
discussion. The point at which the linearization is constructed is the stationary state
of the model in the situation where the variance of function valued shocks is taken to
0. This is not the same as shutting down all variability in the model. In most het-
erogeneous agent models, individuals face a distribution of idiosyncratic uncertainty
which may be arbitrarily dispersed and induces a nondegenerate stationary distribu-
tion of heterogeneity, in which the state of each individual evolves stochastically over
time. In these models, the steady state function is the stationary distribution of het-
erogeneity, in the absence of aggregate shocks. For example, the unemployment rate
can be constant over time while each individual faces employment risk, with the num-
ber of people entering and leaving unemployment equal. Similarly, linearization of
the policy operator does not imply all decision rules are linear: decisions with respect
to individual characteristics may be arbitrarily nonlinear. Instead, the relationship
between function valued state variables is expressed in terms of linear operators.
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3 Example: Trade, Migration, and Economic Geog-

raphy

To provide an illustrative example of the procedure and the class of models which can
be analyzed using these methods, I present a dynamic model of economic geography
based on the spatial model of Krugman (1996). In particular, it borrows the static
spatial equilibrium of that model, which determines wages, output, production, and
prices at a continuum of locations given a distribution of population, and replaces the
dynamic structure, which was given by an ad hoc behavioral rule chosen purely for
tractability, with an intertemporally optimizing dynamic stochastic model of location
choice extending those of Artuç et al. (2010) and Caliendo et al. (2015) to the contin-
uum, allowing analysis of the dynamics of regional economies at arbitrary resolution
in response to aggregate shocks which may be global or asymmetric across regions.
To capture the temporal structure of the dynamics, the model imposes adjustment
costs on the movement of population, so that adjustment to regional shocks must
take place in the short run by movements of prices and quantities and only gradually
by shifts in population. This feature, along with explicit modeling of preferences, al-
lows the evaluation of the welfare implications of regional shocks. Another important
motivation for the choice of this model is that in the special case, also considered by
Krugman (1996), of a completely spatially homogeneous geography with a continuum
of locations where no location differs ex ante from any other, the linearized solution
to the model can be described analytically. This makes the model a useful test case
for numerical algorithms that attempt to approximate this solution numerically.

I begin with the intertemporal decision problem, which can be analyzed inde-
pendently of the static equilibrium structure. Notation follows Krugman (1996).
Individuals working in the tradeables sector at location x in geography G, a set of
locations with a distance metric which for now I take to be a subset of Euclidean
space, receive in each period t a real wage !t(x) and a value of regional amenities
⌫t(x), both taken as given by the worker. A worker in location x at time t may decide
to move to location x0 in period t+1 at a cost c(x0�x) which is a convex function of
distance traveled. Workers are risk neutral with time-separable additive utility and
discount the future at rate �.

In each period, there is heterogeneity in the valuation of locations independent and
identically distributed across workers at a given location x following a distribution
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known as a Gumbel process (Maddison et al. , 2014), a principled generalization
to a continuum of the maximum of independent Type I extreme value distributions
generating a logistic decision rule as in Caliendo et al. (2015).5 Realized utility of
the choice to move from location x to random location x0 2 G in period t + 1 is
drawn each period from a Gumbel process with base measure µx,E

t

Ṽ
t+1

with density
exp(c(x0 � x) + �Et

˜Vt+1(x0
)), where the next period value function is defined by the

Bellman equation for the decision problem

˜Vt(x) = !t(x) + ⌫t(x) +Gµ
x,E

t

Ṽ

t+1
(G)

with Gµ
x,E

t

Ṽ

t+1
(G) the (randomly distributed) value at time t of the choice to move

to a location x0 in period t + 1, with distribution Gumbel(log(
R
exp(c(x0 � x) +

�Et
˜Vt+1(x0

)dx0
)).

This formula can be simplified by working with the conditional expectation of the
next-period value of this equation: denoting Vt(x) := Et

˜Vt+1(x), obtain

Vt(x) = Et{!t+1(x) + ⌫t+1(x) +Gµ
x,V

t+1
(G)}

The corresponding location decision satisfies a multinomial logit decision rule. Defin-
ing the partition function as f(x, V ) :=

R
exp(c(x0� x) + �V (x0

))dx0, the conditional
density of choices at location x0 given current location x is given by

p(x0|x, V ) =

1

f(x, V )

exp(c(x0 � x) + �V (x0
)).

Using the closed form characterization for the expectation of a Gumbel distributed
random variable, it is possible to write this object in terms of the partition function,

5A Gumbel process with base measure µ (not necessarily a probability measure) assigns to each
measurable subset B of G a random utility value G

µ

(B) with distribution Gumbel(logµ(B)), such
that G

µ

(B) is independent of G
µ

(B

c

) and G

µ

(A [ B) = max{G
µ

(A), G

µ

(B)}. A Gumbel process
with base measure µ with density exp(v(x

0
)) with respect to dominating measure dx0 induces a Gibbs

distribution of optimal choices with probability density proportional to exp(v(x

0
)) and a distribution

of ex-post utility of these optimal choices G
µ

(G) ⇠ Gumbel(logµ(G)). Notably, when the choice set
of x0 2 G is finite, this produces choice probabilities and utility distribution identical to those which
would be produced by agents who maximize utility over choices v(x0

)+ ✏(x

0
) with ✏(x

0
) independent

Type I extreme value heterogeneity added to the deterministic value of each choice.
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allowing the Bellman equation to be simplified to

Vt(x) = Et[!t+1(x) + ⌫t+1(x) + log f(x, Vt+1) + �] (3.1)

where � is the Euler-Mascheroni constant (⇡ 0.577). Due to this explicit form, no
numerical optimization is needed to compute the value function.

The above constitutes the forward looking component of the model. To determine
the implications of the chosen policy for dynamics of the equilibrium, assume that
at each location there is a continuum of workers, who each receive independent and
identically distributed preference shocks, and that the total mass of workers has
measure 1 and is distributed across locations at time t with density at location x

given by �t(x). Since the conditional density over locations given an initial state x

is given by p(x0|x, V ), the time evolution of the density of workers across regions is
given by the (adjoint) Markov transition operator

�t+1(x
0
) =

Z

G

p(x0|x, Vt)�t(x)dx (3.2)

taking the current population distribution �t(x) to the next period distribution �t+1(x).
Together, �t and Vt constitute the endogenous function valued state variables of

the model. To complete the model, one computes a static spatial equilibrium which
generates a value of real wages at each location !t(x) given a distribution of population
across places. A number of assumptions on market structure, trade, and geographical
spillovers are possible here, with many models of trade and geography taking similar
functional forms as discussed by Allen & Arkolakis (2014). A simple benchmark
choice is the model of increasing returns, monopolistic competition, and iceberg trade
costs of Krugman (1996), whose static structure (recalled in Appendix D.1) can be
borrowed without change to determine wages given population: for our purposes, it
suffices to note that it induces a differentiable nonlinear operator !(�t(.))(x) giving
a spatial distribution of real wages each period as a deterministic function of the
predetermined population distribution.

The dynamic specification of the model is completed by the inclusion of ag-
gregate uncertainty. For the purpose of the decision problem over locations, any
source of uncertainty which affects the static equilibrium of the model exerts its ef-
fect only through its impact on expected real living standards at different locations,
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!t(x) + ⌫t(x). Amenity value is exogenous in this specification of the model, and
shocks to amenities across locations can reflect natural mechanisms like patterns of
weather or natural disasters, or outcomes of (exogenous) local policies. Disturbances
to variables determined within the static equilibrium of the model, such as changes in
productivity (which may vary by location) in traded or nontraded sectors, changes in
trade costs, or relative preferences for different varieties of good, will all show up in
real wages. Because these are determined as the outcome of a purely static process,
any persistence in these deviations (aside from that transmitted through the dynam-
ics of population, described above), must come from outside the model. As a result,
for the purposes of deriving the dynamics of economic activity and population, it is
equivalent to model all shocks as changes to the exogenous value of amenities ⌫t(x)
at time t, and to provide exogenously specified dynamics for these shocks.

While many forms are possible, because the model will end up being linearized, it is
sufficient to consider a linear specification for the dynamics of ⌫t(x). For simplicity of
illustration and, later, computation, I consider a first order functional autoregression
specification, following Bosq (2000),6 with translation invariant transition operator,
thereby restricting to shocks which do not diffuse differently from ex-ante identical
locations:

⌫t+1(x) =

Z

G

�(x� z)⌫t(z)dz + �"t+1(x) (3.3)

Here �(.) is some bounded, smooth, square-integrable function parameterizing the
degree of spatial diffusion of shocks and "t(x) is an i.i.d. function valued Banach ran-
dom element with covariance operator ⌃. This equation takes form x0

2 = h2(x2)+�z0

with x2 = ⌫, h(x2) =
R
�(x � z)[.]dz and z = ". Note that the additive formulation

of the shock ⌫t is without loss of generality even when interpreted as shocks to the
trade component of the model, as subsequent to linearization, up to appropriate repa-
rameterization of � and ⌃, all specifications lead to a representation in the linearized
Bellman equation as an additive shock to !t(x).

To express this model in format appropriate for solution by a functional linear
rational expectations algorithm, note that the model may be expressed recursively
with F given by equations (3.1), (3.2), and (3.3), in terms of predetermined variables
x1 := �(x) x2 := ⌫(x) and jump variable y := V (x) and their next period values
�0, ⌫ 0, V 0, solving out the static variables to obtain !t = !(�t). I consider (per-

6See Appendix D.2 for discussion of how this form could be derived from standard dynamic panel
data specifications.

14



turbations of) V and ⌫ as elements of L2
(R) and perturbations of �, a probability

distribution, as an element of L2
0(R), the space of square integrable functions on R

integrating to 0, ensuring that densities integrate to 1.
In what follows, I will show how to take the derivatives of a model expressed in

this form and use them to solve for the linearized dynamics and responses of the state
variables of the model to endogenous and exogenous changes.

4 Characterization of Equilibrium Solution

Given a model expressed in the form above, a linear approximation of its solution
can be constructed by linearizing the equilibrium conditions and applying a decom-
position into components which may be solved separately and recursively, one whose
evolution may be expressed as a function of past variables and another which is solved
by iterating forward expectations of future variables. While in some models, the com-
ponents which are solved by looking backwards and the components which are solved
by looking forwards may be identified with separate variables in the system,7 this is
not true in general. Instead, this separation must be determined endogenously in such
a way that initial and end point conditions of the system are satisfied. This often
consists of the requirement that some choice variables or other endogenous variables
must be chosen to affect the expected evolution of other variables so that they satisfy
an endpoint condition.

Most commonly (at least in real models: see Cochrane (2011) for a discussion of
complications in nominal models), long-run behavior is determined by a condition,
such as transversality, which is satisfied when variables follow a dynamic path which
is stationary. While many types of long run restrictions are possible in models with
function valued state variables, I will provide an algorithm for this most common case,
in which the specified model takes recursive form over an infinite horizon and endpoint
conditions require a stationary solution. Although some modification is possible,
including requiring asymptotic convergence (or slow divergence) at a particular rate
possibly above or below 1, due to the infinite dimensional nature of the parameter
space, arbitrary endpoint conditions introduce substantial complications and so these
will not be discussed further.

The requirement that it is possible to separate into solvable components also
7See Appendix C for treatment of this case

15



imposes one more technical limitation: to ensure orthogonality of projections, in what
follows, I specialize from the setting of arbitrary Banach spaces to require all variables
to live on separable Hilbert spaces: H1 = Hx⇥Hy and H2 replace B1 = Bx⇥By and
B2, respectively. For models defined on spaces which can be densely embedded into
a Hilbert space, it is often possible to extend the derivatives to the full Hilbert space
by completion. However, norm convergence results must then be taken with respect
to the Hilbert space norm: see Appendix C for details.

For an economic model with recursive solution which is differentiable and generates
a stationary stochastic process, I describe necessary conditions that the functional
derivatives of the solution operators g(.) and h(.) must satisfy, which will allow these
derivatives to be calculated numerically.

Let the equilibrium conditions for the model of interest be given by 2.2 on page 8

G(x, �) := EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0, �), �) = 0

for all x, � and assume G(x, �) is Fréchet differentiable with respect to x, �.
Take the derivative with respect to x (evaluated at (x⇤, x⇤, y⇤, y⇤, 0)) to obtain

Fx + Fx0hx + Fygx + Fy0gxhx = 0

In matrix form

h
Fx0 Fy0

i " I 0

0 gx

#"
hx

hx

#
= �

h
Fx Fy

i " I

gx

#
(4.1)

Define A =

h
Fx0 Fy0

i
, B = �

h
Fx Fy

i
mapping H1 := Hx ⇥Hy ! H2.

I seek to partially characterize the policy operators h(x, �) and g(x, �) by solving
for their first derivatives with respect to the ‘predetermined’ state variable x, hx and
gx. Written as

A

"
I 0

0 gx

#"
hx

hx

#
= B

"
I

gx

#

this can be seen as an equation in terms of a pair of linear operators (B,A) which
may be solved in terms of a joint decomposition of the pair. In general, multiple
solutions to this system are possible: however, additional considerations provide some
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constraint as to the nature of acceptable solutions. In particular, conditions such as
transversality conditions in optimization and No Ponzi Game conditions often rule
out equilibria in which (some) state variables explode.

As a result, I seek a solution to these equilibrium conditions which also induces
stable, or stationary, dynamics. For finite dimensional deterministic dynamical sys-
tems, sufficient conditions for the local stability around the steady state may be
characterized by the eigenvalues of the linearized transition rule: in discrete time,
eigenvalues less than one in modulus imply stability. For infinite dimensional dy-
namical systems, analogous conditions apply (see Gohberg et al. (1990, Ch. IV.3)).
For rational expectations models characterized in terms of expectations, dynamics of
state variables may be characterized not only by past values, but also by expectations
of future values, and, in particular, certain variables may be allowed to ‘jump,’ which
is to say that in response to a stochastic change in the current state, some variables
may change discontinuously in order to satisfy the equilibrium conditions. As a re-
sult, stability conditions for this class of models differ from those for deterministic
dynamical systems. Most notably, they may exhibit ‘saddle-path stability,’ in which
the system evolves toward the steady state only along a lower-dimensional manifold
and so only a subset of eigenvalues satisfy the stability conditions. A stable solution
exists in such a case if the jump variables may adjust to ensure that the system stays
on this stable manifold.

In the finite dimensional case, stable solutions to this matrix pair equation may
be characterized in terms of the Jordan decomposition of the pair, as in the seminal
work of Blanchard & Kahn (1980), or in the case where singularity may be possible
or numerical stability is desired, in terms of the generalized Schur decomposition as
in Klein (2000). In the infinite dimensional case, one may, under certain regularity
conditions, apply analogues of these decompositions. To provide robustness to singu-
larity and ensure numerical stability, this paper applies an analogue of the generalized
Schur decomposition. As such a decomposition appears to be absent from the litera-
ture, Appendix A provides a detailed characterization and a proof of existence under
a mild set of regularity conditions. The key idea of the proof is to use the generalized
resolvent operator to construct potentially non-orthogonal subspaces on which the
operator pair acts corresponding to elements of the spectrum outside and inside the
unit circle, and then show that orthogonalizing the subspaces to ensure unitarity of
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the transform preserves the spectrum.8

Formally, if (B,A) satisfy the regularity conditions of Lemma (2) in Appendix A,
among which are that (B,A) are bounded operators and that (B,A) are �-regular
on the unit circle: �A�B has bounded inverse for any complex � satisfying |�| = 1,
i.e. the unit circle is in the resolvent set, there exists a decomposition

(B,A) = (Q⇤TU,Q⇤SU)

in which U and Q are unitary operators and S and T may be decomposed as

(T, S) =

 "
T11 T12

0 T22

#
,

"
S11 S12

0 S22

#!

conformable with the decomposition Q =

"
Q1

Q2

#
and U =

"
U1

U2

#
such that the

images of their adjoints U⇤
1 and U⇤

2 respectively decompose H1 into two orthogonal
subspaces H11 and H12 and the spectrum of (T11, S11) lies inside the unit circle, so
S11 has bounded inverse. I further decompose U1, U2 by considering their actions on
Hy and Hx. Write U11 := U1'X , U12 := U1'Y , U21 := U2'X , U22 := U2'Y where
'X

: Hx ! Hx ⇥ {0} ✓ H1 and 'Y
: Hy ! {0}⇥Hy ✓ H1 are imbeddings.

Remark. The assumption of boundedness of the operator pair is not fundamental.
Rather, it reflects the choice of space on which the operators are defined. See Kur-
batova (2009) for a way in which to define the domain on which the pair acts so
that boundedness holds and the above decomposition may be constructed for op-
erator pairs unbounded with respect to the original choice of space H1 by working
on a restricted space. The use of potentially unbounded operators may be useful if
equilibrium conditions are defined in terms of differential operators, as is common
in continuous time versions of the models studied in this paper, as in Achdou et al.
(2017). In discrete time, the conditions of interest are generally defined in terms of
integral equations and so boundedness usually holds on the original space.

In contrast, �-regularity imposes nontrivial restrictions. By requiring existence of
a bounded operator with bounded inverse between the two spaces, it requires that H1

8For a pair of bounded operators (B,A) each in L(H
a

! H
b

), following Gohberg et al. (1990),
define the spectrum �(B,A) as those � 2 C such that �A�B is not invertible, accompanied by the
point1 if and only if A does not have bounded inverse, and the resolvent set ⇢(B,A) as C1\�(B,A).
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and H2 be isomorphic, reflecting the traditional condition that to have a unique set of
solutions, it is necessary that there be as many equations as unknowns. Invertibility
on the unit circle also rules out a continuous spectrum in the neighborhood of the
unit circle. To see this, note that because the resolvent set of an operator pair is open,
invertibility must also hold in an open neighborhood of the unit circle, and so it cannot
be the case that the spectrum has a limit point in the unit circle. This rules out unit
roots in the dynamics (as in Chang et al. (2014)) as well as certain processes with
long memory. It also excludes certain classes of operators. A prominent example of an
operator pair with a continuous spectrum is an identity paired with a multiplication
operator (which can arise as the functional derivative of a composition operator), i.e.
(F, I) with F [g(x)] = f(x) · g(x), which has continuous spectrum taking all values
attained by f(x). If |f(x)| has a limit point equal to 1, this operator pair is not �-
regular. In this case a spectral decomposition can be constructed analytically, and a
solution will exist with long memory or unit root behavior (depending on the behavior
of f(x) as it approaches 1), but for general models which fail to be �-regular with no
closed form spectral decomposition, numerical approximations of the decomposition
based on projection methods may be highly unstable.

The generalized Schur decomposition allows us to rewrite our decomposition as

Q⇤
"

S11 S12

0 S22

#"
U11 U12

U21 U22

#"
I 0

0 gx

#"
hx

hx

#

= Q⇤
"

T11 T12

0 T22

#"
U11 U12

U21 U22

#"
I

gx

#
(4.2)

Unitarity of Q allows it to cancel on both sides, leaving, after simplification,
"

S11 S12

0 S22

#"
(U11 + U12gx)hx

(U21 + U22gx)hx

#
=

"
T11 T12

0 T22

#"
U11 + U12gx

U21 + U22gx

#
.

To find a stable solution, first solve for gx, which determines the jump variables
in terms of the predetermined variables, and then use this to find the value of hx. To
ensure that the second line holds trivially, it is sufficient to find gx : Hx ! Hy such
that

U21 + U22gx = 0 (4.3)
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always. In principle, there may be many solutions, one solution, or no solution to
this problem. In the case that U22U⇤

22 has bounded inverse on the space Im(U2), at
least one solution exists, given by what is referred to in numerical analysis as the
‘minimum norm solution’ (Golub & Van Loan, 1996, Ch. 4) to the linear equation
(4.3),

gx = �U⇤
22(U22U

⇤
22)

�1U21. (4.4)

It is worth noting how the condition that U22U⇤
22 has bounded inverse relates to the

eigenvalue criteria in Blanchard & Kahn (1980) and subsequent rational expectations
solution procedures. The existence of a bounded inverse implies U22U⇤

22 is bijective,
and so U22 is surjective onto Im(U2), which is mapped isometrically to H12 by the
continuous and invertible linear transformation U⇤

2 . Therefore, there exists a linear
surjection from Hy ! H12. In finite dimensions, this requires that the dimension of
the space of ‘jump variables’ y is at least as large as the dimension of the eigenspace
corresponding to the ‘unstable’ generalized eigenvalues. Note however that in infinite
dimensions, both of these spaces are infinite dimensional and the spectrum is generally
uncountable, so this criterion cannot be expressed in terms of a relationship between
the ‘number of eigenvalues greater than one’ and the ‘number of jump variables’.

There is also an analogous condition characterizing uniqueness of the solution.
Consider the case in which U22 has nontrivial null space. Then if gx is a solution and g̃

is an operator whose range is a subset of Ker U22, gx+g̃ also satisfies U21+U22(gx+g̃) =

0. Thus, a solution is unique only if U22 has trivial null space. Formally, a solution is
unique if and only if U22 is Hy-complete: 8y 2 Hy, U22y = 0 implies y = 0. If U22 is
complete and surjective, then it is bijective, and so, by the bounded inverse theorem
has a bounded inverse and so

gx = �U22
�1U21 (4.5)

is the unique solution. In finite dimensions, a necessary condition for a linear operator
to have trivial null space is that the domain and range spaces are of the same dimen-
sion, corresponding to the case in which the number of jump variables and unstable
eigenvalues is exactly equal. Note that while there is a burgeoning literature on the
characterization and implications of completeness in econometric models (see, e.g.,
Andrews (2011)), this is generally in the context of operators which are not surjective
and do not have bounded inverse.

If U22 is surjective but not complete, the system is said to be underdetermined, and
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there may be many solutions, of which �U⇤
22(U22U⇤

22)
�1U21, the minimum norm solu-

tion is one. In this case, any solution to the system must be equal to�U⇤
22(U22U⇤

22)
�1U21

plus an operator g̃ whose range is in the kernel of U22, which is the complement
of the range of U⇤

22, and so for all x 2 Hx k � U⇤
22(U22U⇤

22)
�1U21x + g̃xk = k �

U⇤
22(U22U⇤

22)
�1U21xk + kg̃xk � k � U⇤

22(U22U⇤
22)

�1U21xk hence the description ‘mini-
mum norm’. This corresponds to the case in finite dimensions in which there are more
jump variables than unstable eigenvalues. In this case, one may calculate a canonical
solution with minimum norm, but there are also a continuum of other solutions in
which arbitrary terms may be added in the eigenspaces corresponding to the jump
variables so long as these terms are sent to zero by the expectation operator. This
situation corresponds to the partial identification result when completeness fails in
nonparametric instrumental variables estimation described in Santos (2012). While
indeterminacy in the finite dimensional case has received extensive study, for brevity
and to avoid technical complications, I will consider only cases in which the solution
is unique, in which case U�1

22 is bounded and well defined.
Given a solution for gx, the evolution equation for the predetermined variables

may be expressed in terms of this solution. Imposing condition (4.3), the equilibrium
conditions hold if S11(U11 + U12gx)hx = T11(U11 + U12gx). Since S11 has bounded
inverse by construction, this gives

hx = (U11 + U12gx)
�1S�1

11 T11(U11 + U12gx) (4.6)

is a solution so long as U11 + U12gx has bounded inverse. Moreover, this operator is
similar to S�1

11 T11 and so has identical spectrum. In particular, by the construction
of S11 and T11 the spectrum of this operator is inside the complex unit circle. So, by
Gohberg et al. (1990, Thm IV.3.1), the difference equation xt+1 = hxxt, x0 = x 2 Hx

has a unique solution for any given x, given by xt = (hx)
tx, which converges to 0.

Thus, one can say that hx is a stable solution. Moreover, under these conditions,
Bosq (2000, Thm 3.1) implies that the Hilbert AR(1) functional linear process given
by xt+1 = hxxt+⇠t, where ⇠t is a Hx random element uncorrelated over t has a unique
covariance stationary solution, and so one is justified in referring to hx as a stationary
solution.

Note that existence of a solution to the operator equation (4.1) is a necessary
condition for the existence of a differentiable solution consistent with the equilibrium
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conditions of the model but is not sufficient. For an overview of high level conditions
that might be used to ensure existence of a solution, see Appendix F.

5 Algorithm

Having a formula for the functional derivatives of the policy operators in terms of the
functional derivatives of the equilibrium conditions is not sufficient to implement the
formula unless the components of that formula, defined in terms of the generalized
Schur decomposition, can be found. While there are some cases where this can be done
analytically, these require a high degree of structure to be imposed, often requiring
the model to take a partial equilibrium structure where aggregate variables are taken
as exogenous or requiring individual decisions not to depend on the aggregate state
(see Appendix C). Beyond these and some other idiosyncratic cases, a numerical
procedure is needed to construct the solution. This can be done using projection of
the equilibrium conditions onto a finite set of basis functions, so long as the model
takes a structure where the approximation error this introduces can be controlled.
Conditions under which this holds can often be verified easily, and in particular
hold for the economic geography model described in Section 3. In the following
sections, I describe a general method under high level conditions which ensure that a
projection representation yields an accurate approximation to a solution, then provide
an algorithm and set of low level conditions which provide an example and guide to
ensuring the high level conditions using wavelets, a particularly attractive class of
basis functions in terms of speed, accuracy, and ease of implementation.

5.1 Numerical Evaluation by Projection

In general equilibrium problems, forward looking decisions both influence and are
influenced by the evolution of persistent states. In such cases, it becomes necessary
to apply a method which can separate the forward and backward looking subspaces
under general conditions. Unfortunately, closed form solutions are rarely available for
the generalized Schur decomposition of systems of operator equations and one must
instead turn to numerics. For an algorithm to be useful, it must take data which are
computable from representations of the derivatives of the equilibrium conditions and
output an approximate decomposition. This suggests application of methods based
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on sampling, where the derivative operators are approximated by finite dimensional
objects to which a decomposition may be applied numerically.

A particularly simple way to perform this approximation is to approximate an
infinite dimensional separable Hilbert space by an increasing sequence of subspaces,
possibly spanned by a standard set of basis functions. On such spaces, the derivative
operators of interest are finite dimensional matrices. As the number of basis functions
grows, representation of any function in the space becomes increasingly accurate,
and one may hope that at a sufficient level of detail, the finite dimensional system
accurately approximates the infinite dimensional one. If this is the case, it may be
possible to simply apply solution algorithms for finite dimensional linear rational
expectations algorithms to produce finite dimensional approximations of the policy
functions.

While intuitively appealing, there is an important step missing in the above logic.
In order for the finite dimensional solutions to be accurate, at least asymptotically, it is
necessary that when the input of the finite dimensional rational expectation algorithm
is sufficiently close to the truth, that the output also be close: the solution must be
continuous. While continuity results exist for the generalized Schur decomposition in
finite dimensional spaces with respect to the Hilbert-Schmidt norm (Stewart, 1973;
Golub & Van Loan, 1996), in infinite dimensions this norm need not even be finite
for operators, like the identity, used in practice, and so is overly strong for this
application. Therefore, in Appendix B, I demonstrate a generalization of this result
to the (weaker) operator norm: for A 2 L(Ha ! Hb), kAkop = sup

kxkH
a

=1
kAxkH

b

. If a

sampling procedure converges to the true derivatives in operator norm, the generalized
Schur decomposition will also converge in the same norm.

While reassuring, continuity in operator norm is in fact of limited applicability
without some important auxiliary hypotheses. In particular, it is known that a finite
dimensional matrix may approximate an infinite dimensional operator in operator
norm only if that operator is compact. This presents something of a difficulty, as es-
sentially no economic models with function valued states have derivatives which are
compact operators. However, there exists a limited but far from trivial subclass of
models in which it is nevertheless possible to construct the generalized Schur decom-
position of a set of operators which consistently approximates the true equilibrium
derivatives in operator norm and so to which the continuity result applies. I refer to
models which satisfy this condition as asymptotically diagonal.
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Definition 3. The operator pair (B,A) is asymptotically diagonal if there exists
a known linear isometry such that H1 is isometrically isomorphic to H2, and the
representation of the operator pair with respect to this isometry (which will also be
denoted (B,A)) satisfies the decomposition (B,A) = (BI , AI) + (BC , AC) such that
BC and AC are compact and there exist known finite partitions of Hx,Hy ⇢ H1

⇠
=

H2

into orthogonal subspaces {Hj}Jj=1 conformable with the partition into Hx and Hy,
usually corresponding to variables making up X and Y , such that for each pair
(i, j) 2 {1 . . . J}2, AI

ij

:= ProjH
i

AIProjH
j

and BI
ij

:= ProjH
i

BIProjH
j

satisfy AI
ij

and BI
ij

are each either equal to the zero operator or to a scalar multiple of the
identity Iij, where Iij is defined for i = j as the identity operator on Hi and for i 6= j

is defined as the identity from Hj to Hi if Hi
⇠
=

Hj.

Informally, this statement says that asymptotically diagonal systems can be bro-
ken up into a compact part and a part for which all subcomponents are equal to the
identity. The typical form for an asymptotically diagonal operator pair is a set of
square block operators acting on a space of J functions, where each block contains
an identity operator, a compact operator, or a sum of a compact operator and an
identity operator. For example if J = 2, (B,A) may take the form

 "
c1I11 + C1 c2I12 + C2

c3I21 + C3 c4I22 + C4

#
,

"
c5I11 + C5 c6I12 + C6

c7I21 + C7 c8I22 + C8

#!
(5.1)

where c1 through c8 are real scalars (possibly 0) and C1 through C8 are compact oper-
ators, for example integral operators of the form

R
K(x, z)[f(z)]dz for some bounded

smooth function K(x, z) : [0, 1)2 ! R1 in the case where Hj is L2
[0, 1). Here

(BC , AC) collects the C components and (BI , AI) collects the cI components.
Asymptotic diagonality ensures that the model has a tractable form ‘up to a com-

pact perturbation.’ In particular, it can be seen that (BI , AI) is block diagonal with
respect to any orthonormal basis of H1 conformable with the partition into subspaces
{Hj}Jj=1 with blocks which are J-dimensional square pencils which are, importantly,
all identical. For example, for a pair in the form of (5.1), for any orthonormal ba-
sis {�i1}1i=1 of Hj=1, which must have a corresponding basis {�i2}1i=1 for Hj=2 if
Hj=1

⇠
=

Hj=2, (if not, the off-diagonal components c2, c3, c6, and c7 must all be 0, as
no identity can be defined), the action of (BI , AI) on the coefficients corresponding
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to functions (�i1,�i2) is given by the pair of 2⇥ 2 matrices
 "

c1 c2

c3 c4

#
,

"
c5 c6

c7 c8

#!

for any i = 1 . . .1. This provides a representation of (BI , AI) as block diagonal
with respect to the the orthonormal basis {{eij}1i=1}2j=1 of H = Hj=1 ⇥ Hj=2 with
ei1 = (�i1, 0), ei2 = (0,�i2), with blocks corresponding to pairs identified by common
index i. As a result, to construct the generalized Schur decomposition of (BI , AI),
it suffices to calculate a single J-dimensional decomposition of the matrix pencil
representing any particular block and to concatenate the identical and orthogonal
blocks.

Generally speaking, the isometry condition will be fulfilled by any model which
uniquely determines an equilibrium, as it generalizes the familiar requirement that a
model have an identical number of equations and unknowns, so the space into which
the equilibrium conditions map will generally have a canonical isomorphism to the
space of unknown states. This holds similarly for the J subspaces, which usually
correspond to interpretable variables in the context of the model, with isomorphisms
between spaces of variables likewise defined canonically. For example, in the geogra-
phy model, the distribution of wages and the distribution of amenities may be defined
as functions on the same space defined in the same units.

The use of a restriction of this kind is that identity components are common com-
ponents of the derivative operators of many models, because many conditions take
the form of defining a variable or assigning it a value, but are not compact, and so
cannot be approximated directly by finite dimensional approximations. The remain-
der of (BI , AI) after projection onto any subspace does not go to 0, but because it
takes a tractable diagonal form, it is known. In contrast, for the compact compo-
nent, the remainder when projecting onto an increasing sequence of subspaces does
go to 0 and so is asymptotically negligible. By combining these two components, it is
possible to use a finite dimensional projection to approximate the operator pencil on
a finite dimensional subspace and leave a remainder on the orthogonal complement
space which is known up to an asymptotically negligible perturbation. In this way,
one can use a finite set of computations to compute a generalized Schur decomposi-
tion corresponding to an operator pencil which is close in norm to the true infinite
dimensional pencil, and so by the continuity in norm of the decomposition, yields a
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decomposition which is close to the true one.
When the derivatives of the equilibrium conditions of a model are asymptotically

diagonal (and a unique stable equilibrium exists local to the steady state), computa-
tion of the first order approximation of the policy operators is both straightforward
and computationally fast, in the sense that a consistent approximation can be com-
puted to any desired precision in time polynomial in the number of basis functions
used in the approximation. The procedure consists of projecting the equilibrium
derivative operators onto a finite dimensional orthogonal subspace, computing the
policy operators on that subspace by applying directly a standard first order ratio-
nal expectations solution algorithm for finite dimensional models, and computing
the policy operator on the orthogonal complement of that subspace analytically us-
ing (BI , AI). The operator norm precision of the resulting approximation is then
asymptotically of no higher order than the operator norm error in the projection
approximation of (BC , AC). While compactness alone ensures only that this projec-
tion error goes to 0 as the number of basis functions increases, when the compact
component takes the form of integral operators

R
K(x, z)[f(z)]dz, mild smoothness

conditions (or other limited complexity conditions) on the kernel can be used to ensure
a rate of convergence. Moreover, in the case where projections cannot be calculated
analytically, for example because the kernel function can only be accessed by point
evaluation and so integrals must be computed approximately by quadrature, similar
smoothness conditions ensure that the additional error induced is controllable. Alter-
nately, in some cases one may estimate a operator from data. In this case, plugging in
any matrix-valued operator norm consistent estimator (as in Guillas (2001) for func-
tional autoregressions, or Park & Qian (2012) or Benatia et al. (2015) for functional
regression) produces a consistent estimator of the policy functions.

As a very wide variety of schemes for approximating such an operator may be
applied, I first provide a general purpose bound in terms of operator norm error,
under a set of high level sufficient conditions on the approximation.

Condition 1. (i) (B,A) H1 ! H2 is an asymptotically diagonal pair of bounded
operators, �-regular with respect to closed Cauchy curve � (i.e., per Definition (1)
in Appendix A, �A � B is invertible for all � in a closed curve � ⇢ C1 separating
the extended complex plane into an interior and exterior subsets), with generalized
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Schur decomposition with respect to � given by

(B,A) = [Q⇤
1, Q

⇤
2]

"
T11 T12

0 T22

,
S11 S12

0 S22

#"
U1

U2

#

(ii) dif(
T11 S11

T22 S22

) > 0, where the dif operator is defined in (B.4) in Appendix B

as a measure of continuity of the generalized Schur decomposition with respect to
perturbations

(iii) U22 = U2'X is invertible

Remark. On Condition (1): These conditions on the derivatives of the model are not
entirely general but apply to fairly broad classes of models. Asymptotic diagonality
is a smoothness condition which rules out certain classes of models which display
excessive ‘frequency mixing’. The general property of operators which this rules out is
a transfer of energy between frequencies which fails to dissipate as frequency increases
to infinity: an archetypal example would be a map involving the delta function. In
these cases, input functions with a high degree of regularity are passed to outputs
which may be irregular, impeding the ability to represent the system uniformly in
time with respect to classes of regular functions which can be well approximated
by standard function approximation. This transfer of energy to higher and higher
frequencies is commonly described in models of physical systems as an aspect of
(weak) turbulence, and generally requires numerical methods different from those
described here. It may often be ensured by including additional smoothing or noise
conditions in the model, or other transformations: see Appendix C for discussion.

�-regularity ensures that forward and backward looking components of the system
can be distinguished, and imposes some restriction on the time series properties of
the model, as described above.

Condition (ii) on the dif operator of the pair similarly imposes that the forward
and backward looking components are well-separated, ensuring their continuity with
respect to small perturbations in the operators: see Appendix B for an exact defi-
nition and further discussion. Heuristically speaking, the dif constant is a measure
of the separation between the forward and backward subspaces which depends on
the spectral gap between the subspaces and the degree of nonnormality (or deviation
from a diagonalizable pair) of the operator pair. In the case where the operator pair
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(B,A) is diagonalizable, it is equal to the minimum distance between the spectra of
(T11, S11) and (T22, S22) and so positivity is implied by �-regularity. �-regularity is
also sufficient in the case that (B,A) is finite dimensional (see Stewart & Sun (1990)
Thm VI.1.11) or in the case in which either B or A is invertible, in which case it
follows from the Sylvester-Rosenblum theorem for operators (Bhatia & Rosenthal,
1997), though the exact size will depend on the degree of nonnormality.

Condition (iii) is necessary for existence and uniqueness of derivatives of a policy
function which are consistent with the equilibrium conditions: it ensures that there
is a correct model to be approximated.

To provide a consistent approximation, it is necessary to choose a sequence of
finite dimensional orthogonal subspaces which converge to H. Generally these will
be defined as the closed linear span of an increasing sequence of functions in a set of
complete orthonormal bases of {Hj}Jj=1, though orthonormality is mainly a compu-
tational and notational convenience. As one often does not have access to an exact
projection, it is sufficient to request a consistent approximation to one instead. For
consistency, approximations should satisfy the following properties

Condition 2. (i) Let {⇡K
j

j }Jj=1 be J orthogonal projections onto Kj-dimensional
orthogonal subspaces of {Hj}Jj=1 respectively such that Im ⇡K

i

i
⇠
=

Im ⇡
K

j

j if Hi
⇠
=

Hj

(i.e., ⇡K
j and ⇡K

i

i map to subspaces which are identified of elements of the partition
which are themselves identified), and let ⇡K

=

PJ
j=1 ⇡

K
j

j project onto the K =

PJ
j=1 Kj -dimensional union of these subspaces. Define (BK , AK

) := ⇡K
(B,A)⇡K ,

and (BK
C , AK

C ) := ⇡K
(BC , AC)⇡K . Let

max{��BK
C � BC

��
op
,
��AK

C � AC

��
op
}  ⌘K

for some sequence ⌘K decreasing to 0 as K !1.
(ii) Let (

˜BK , ˜AK
) be a sequence of matrix approximations of (BK , AK

) on a Eu-
clidean space isomorphic to Im ⇡K satisfying

max{
��� ˜BK � BK

���
op
,
��� ˜AK � AK

���
op
}  ⇣K

for some sequence ⇣K decreasing to 0 as K !1.

In practice, as the J subspaces of H represent distinct functions used as state
variables (for example, a value function and a distribution over agents), these ap-
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proximations are given by first choosing an appropriate complete series basis for
each function of interest and representing each function with respect to an increasing
number of terms in that series. The numerical representation of the operators with
respect to the series (

˜BK , ˜AK
) is then calculated by interpolation, quadrature, exact

sampling in some special cases, or estimation. Note that consistency of the projec-
tions is required only over (BC , AC). Both on and off the projected space, (BI , AI)

has exact representation as a set of scalar multiples of identity matrices on Im ⇡K

and as identity operators on the orthogonal complement of that space.
Given a choice of spaces onto which to project and a consistent approximation

of the projected operators, approximate solutions may be defined by calculating pol-
icy operators g̃Kx , ˜hK

x and gK?
x , hK?

x from (B,A) separately on Im ⇡K and Ker ⇡K ,
respectively and composing them, as follows.

Denote the generalized Schur decomposition with respect to � of the finite dimen-
sional matrix representation of ( ˜BK , ˜AK

) as

[

˜Q⇤K
1 , ˜Q⇤K

2 ]

"
˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

#"
˜UK
11

˜UK
12

˜UK
21

˜UK
22

#
.

Note that because this is a finite dimensional matrix pair, this may be calculated
in O(K3

) time by the QZ algorithm: see Golub & Van Loan (1996). Applying the
formulas for the policy operators to this restricted space, define g̃Kx = �( ˜UK

22)
�1

˜UK
21 ,

˜hK
x = (

˜UK
11 +

˜UK
12 g̃

K
X )

�1
(

˜SK
11)

�1
˜TK
11(

˜UK
11 +

˜UK
12 g̃

K
X ). These define an approximation of gx

and hx respectively on the space Im ⇡K .
As the restriction of the policy function to this space need not, in general, consis-

tently approximate the policy functions over H1 as a whole, supplement by an approx-
imation on the orthogonal complement space, gK?

x , hK?
x by considering only (BI , AI)

on this space. This is a reasonable approximation because for K large enough, the
contribution of (BC , AC) on the remainder becomes negligible. Consider a set of com-
plete orthonormal bases of Hj, {eij}Jj=1, i = 1 . . .1, where esj and etk are identified
if s = t and Hj

⇠
=

Hk. Then, by construction, for all i, (BI , AI) maps the closure
of their span Span{eij}Jj=1 to itself and moreover, the representation of this map is
identical for all i. Informally, (BI , AI) is (H-equivalent to by Parseval’s identity) a
block diagonal matrix pair over this complete orthonormal basis with identical J ⇥ J

blocks. Further, because an identity matrix has identity representation with respect
to any choice of basis, one may choose a basis such that {eij}Jj=1, i = K + 1 . . .1
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are a complete orthonormal basis of Ker ⇡K (these may or may not be the remaining
elements of an orthonormal basis the projection onto the span of which defines ⇡K ,
though this representation is convenient). By the orthogonality of the blocks, it is
sufficient to define the policy function separately on each block. This can be done
by applying the solution formula to any J-dimensional block i, regarded as a pair of
J ⇥ J matrices, (Bi

I , A
i
I). These have generalized Schur decomposition

(Bi
I , A

i
I) = [Qi⇤

1 , Q
i⇤
2 ]

"
T i
11 T i

12

0 T i
22

,
Si
11 Si

12

0 Si
22

#"
U i
11

U i
21

U i
12

U i
22

#

on each block i, where U i
11 and U i

21 acts on the J1 elements contained in Hx and U i
12

and U i
22 act on the J � J1 elements contained in Hy. The corresponding block of the

policy operators are given by gix = �(U i
22)

�1U i
21, hi

x = (U i
11+U i

12g
i
x)

�1
(Si

11)
�1T i

11(U
i
11+

U i
12g

i
x). To define an approximation on the orthogonal complement of Im ⇡K , simply

concatenate the blocks, giving sequential representations

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gix)(j�J1)k heik, [.]i eij

and

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij.

Note that since each block is identical, calculation of the policy function needs to be
performed for only one representative block, with running time dominated by the QZ
algorithm, of order O(J3

), typically negligible.
The approximation to the policy operators on H are given by gK := g̃Kx +gK?

x and
hK :=

˜hK
x + hK?

x . A summary of the steps leading to their construction is provided
as Algorithm 1. Under the conditions given, these aproximations are consistent in
operator norm.

Theorem 1. Let (B,A) and their approximations (

˜BK , ˜AK
) satisfy Conditions (1)

and (2). Then kgK � gxkop ! 0 and khK�hxkop ! 0 as K !1. In particular, there
exists some ¯K and some constant C such that for K > ¯K, kgK � gxkop  C(⇣K +⌘K)

and khK � hxkop  C(⇣K + ⌘K).

Proof. See Appendix.
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The idea behind the consistency argument is to show that the generalized Schur
decomposition of the combined approximation on and off Im ⇡K converges in operator
norm and then apply perturbation theorems ensuring continuity in operator norm for
the Schur projectors and Rayleigh components. Then by applying orthogonality, one
can show that the policy functions corresponding to the generalized Schur decompo-
sitions on and off Im ⇡K are equivalent to the policy functions corresponding to the
Schur decomposition of the approximate operator as a whole. The exact constant C

and ¯K are both decreasing functions of the dif constant of (B,A). While the rate of
convergence is unaffected, for highly non-normal operators or those with a small gap
between the spectrum of the forward and backward looking components, the constant
on the rate may be large.

This result may easily be seen to be rate optimal. Consider a model of the form
(B,A) = (�hx, I), with hx compact and stable; the operator norm approximation
rate for the policy operator is then identical to the approximation rate of BC = hx.

5.2 Implementation: Wavelet Transform

Overall, the computational effort needed to obtain ✏-close approximations is driven by
the rates ⌘K and ⇣K . If efficient (or exact) evaluation schemes are used, the projection
error ⌘K tends to dominate: this may not be the case if the value of the projection
coefficients is determined by estimation, in which case the accuracy of ⇣K is limited
by the quantity of data available. To more precisely quantify the size of these errors,
I provide an example of a set of conditions on (B,A), the approximating subspace
Im ⇡K , and the evaluation method for the projections which provides precise rates.

In particular, I demonstrate approximate projection onto a Coiflet wavelet basis
using a 1-point quadrature scheme derived from Beylkin et al. (1991). Rates of con-
vergence are shown for Fredholm integral operators with Hölder-continuous periodic
kernel over compact support. Fredholm integral operators are a canonical example
of operators which are given by a compact component and potentially a component
given by an identity and appear frequently in examples including the model of Section
3. Wavelet sampling methods provide a particularly fast and accurate method for ap-
proximating these operators even when the kernel can only be accessed by pointwise
evaluation, perhaps because it is a complicated function which has itself been numer-
ically approximated, such as a function of a steady state calculated numerically by
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Algorithm 1 Construction of gK , hK

Inputs: An equilibrium operator F (x, y, x0, y0, �) satisfying Condition 1, Im ⇡K a
K-dimensional subspace satisfying Condition 2, and {{eij}Jj=1}1i=K+1 a conformable
orthonormal basis for the orthogonal complement of Im ⇡K

Output: gK , hK approximate functional derivatives of recursive solution with respect
to x

1. Compute steady state (x⇤, y⇤) s.t. F (x⇤, y⇤, x⇤, y⇤, 0) = 0

2. (B,A)  �� ⇥ Fx Fy

⇤
,
⇥
Fx0 Fy0

⇤�
Calculate functional derivatives at

steady state

3. Decompose (B,A) into (BI , AI) + (BC , AC) compact and identity components
as per Definition 3

4. Construct (

˜BK , ˜AK
), a K-dimensional approximate projection of (B,A) onto

Im ⇡K , satisfying Condition 2, using Algorithm 2 or other method

5. Build components of policy operator on Im ⇡K and Ker ⇡K

(a) Build policy operators on Im ⇡K using approximate projections

i. [

˜Q⇤K
1 , ˜Q⇤K

2 ]


˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

� 
˜UK
11

˜UK
12

˜UK
21

˜UK
22

�
 QZ( ˜BK , ˜AK

)

Apply QZ algorithm to obtain generalized Schur decomposition of
(

˜BK , ˜AK
)

ii. g̃Kx  �( ˜UK
22)

�1
˜UK
21 , ˜hK

x  (

˜UK
11 +

˜UK
12 g̃

K
X )

�1
(

˜SK
11)

�1
˜TK
11(

˜UK
11 +

˜UK
12 g̃

K
X )

(b) Build policy operators on Ker ⇡K by analytical decomposition of (BI , AI)

i. [(Bi
I , A

i
I)]jk  hBIeij, eiki , hAIeij, eiki 8j, k = 1 . . . J Construct

(Bi
I , A

i
I) (identical for all i) using {eij}Jj=1 for some i

ii. [Qi⇤
1 , Q

i⇤
2 ]


T i
11 T i

12

0 T i
22

,
Si
11 Si

12

0 Si
22

� 
U i
11

U i
21

U i
12

U i
22

�
 QZ(Bi

I , A
i
I) Apply

QZ algorithm to (Bi
I , A

i
I)

iii. gix  �(U i
22)

�1U i
21, hi

x  (U i
11+U i

12g
i
x)

�1
(Si

11)
�1T i

11(U
i
11+U i

12g
i
x) Build

policy functions over Span{eij}Jj=1

iv. Add identical components for all i = K + 1 . . .1

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gix)(j�J1)k heik, [.]i eij

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij

for J1 blocks in Hx, J � J1 in Hy.

6. gK  g̃Kx + gK?
x , hK  ˜hK

x + hK?
x Add components

32



fixed point iteration.

Condition 3. (i) Let {Hj}Jj=1 be given by the spaces of square integrable periodic
functions of dimension dj with domain normalizable to [0, 1)dj , Hj = L2

per[0, 1)
d
j . Let

(BC , AC) consist on each block (i, j) of r = B or r = A of integral operators mapping
f(y) 2 Hj to f(x) 2 Hi f(x) =

R
[0,1)dj Kr,ij(x, y)[f(y)]dy such that for all r, i, j

sup

x,y2[0,1)di⇥[0,1)dj
|Kr,ij(x, y)|<1 and Kr,ij(x, y) 2⇤↵

r,ij

([0, 1)di ⇥ [0, 1)dj), the space of

↵r,ij-Hölder continuous periodic functions on [0, 1)di ⇥ [0, 1)dj for some ↵r,ij > 0.9

(ii) Let Im ⇡K
j be the subspace spanned for each j by a tensor product of dj one-

dimensional orthonormal Coiflet wavelet multiresolution analyses with mother wavelet
 and scaling function � with each bounded, having support which is a compact
interval, and a number of vanishing moments greater than or equal to min

r,i,j
↵r,ij. Let

the matrix representation of ( ˜BK , ˜AK
) on this space be given by ⇡K

(BI , AI)⇡K plus
a matrix where the i, j block is given by the discrete wavelet transforms over rows
then columns of the Ki ⇥ Kj matrix whose (s, t) entry is 1p

K
i

K
j

Kr,ij(xs, yt), where

{xs}Ki

s=1 and {yt}Kj

t=1 are dyadic grids over [0, 1)di and [0, 1)dj respectively.

Remark. On (i): These assumptions can be slightly relaxed through different choices
of wavelet basis. Periodicity is convenient for proofs because it does not require any
special treatment of boundaries; it also fits the example model presented. Depending
on the problem, this may be relaxed by one of a number of boundary extension
methods: see Mallat (2008). Compact support can be replaced by a tail condition
by sampling an increasing spatial domain. Boundedness of the kernel can likewise
be dispensed with provided the operator remains compact and some knowledge of
the singularity is available: Beylkin et al. (1991) provides methods and convergence
results for many singular integral operators. It is likely that Hölder regularity could
be replaced with more general Besov classes which may exhibit less uniform regularity,
at the expense of more difficult analysis of the quadrature approximation.

On (ii): As described, the procedure represents each kernel in terms of a ten-
sor product of multiresolution wavelet bases instead of a single multidimensional
multiresolution analysis as advocated in Beylkin et al. (1991). A tensor product

9A function f(x) is Hölder continuous on domain I of order ↵ 2 (0, 1] if sup

x,y2I

|f(x) � f(y)| 
K|x � y|↵ and is Hölder continuous of non-integer order ↵ > 1 if it is b↵c times continuously
differentiable with b↵cth derivatives Hölder continuous of order ↵� b↵c.
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representation of the operator over the domain and range bases is necessary to ensure
that functions in the domain and range space are represented in terms of the same
dj-dimensional orthonormal wavelet basis. For j with dj > 1, either a tensor product
wavelet basis or a multidimensional wavelet multiresolution analysis may be used in
calculating the basis functions within the domain or range space, respectively: the
space spanned by a finite representation is identical. In practice, the multidimensional
MRA is preferred computationally. The moment condition is assumed to hold for the
one-dimensional wavelets generating the tensor product or multiresolution basis.

The requirement that both wavelet and scaling function have compact support, ↵
vanishing moments, and generate an orthonormal basis strongly restricts the choice
of wavelet class. The use of Coiflets (Beylkin et al. , 1991) (or certain mild general-
izations, as in Wei (1998), which also maintain these properties) is in fact required to
achieve optimal rates via the procedure described. The purpose of this assumption
is to ensure that the operator can be represented directly in terms of the discrete
wavelet transform of its evaluations at a set of points, effecting a ‘one-point quadra-
ture’ scheme for the calculation of the coefficients of the representation. For more
general classes of wavelets, the use of the discrete wavelet transform of the evalua-
tion points of a smooth function to substitute for the projection onto a wavelet basis
results in an error which is of higher order than the error induced by restricting to a
projection onto a finite basis.

Other classes of wavelets may be used if the projection is approximated by a multi-
point quadrature scheme, as described in Beylkin et al. (1991) or Sweldens & Piessens
(1994), at the cost of additional preprocessing before applying the discrete wavelet
transform. If neither multipoint quadrature nor the use of Coiflets is acceptable, it is
also possible to use interpolating wavelets, which do not form an orthogonal basis and
result in a more complicated representation of ⇡K

(BI , AI)⇡K . General considerations
regarding wavelet sampling are discussed in Mallat (2008). One case in which special-
ized classes of wavelets may be necessary is when the domain is not rectangular or is
a subset of a non-Euclidean manifold, as may occur with geographic data restricted
to an irregularly shaped geographic unit or on the surface of the Earth. In this case,
a variety of alternative bases and sampling methods are available.

The procedure for constructing approximate projections ( ˜BK , ˜AK
) using the Coiflet

basis is laid out in Algorithm 2. Under the above conditions, it can easily be shown
that one obtains rapid convergence of the approximation algorithm:
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Theorem 2. Let (B,A) and (

˜BK , ˜AK
) satisfy (1),(2), and (3). If ↵̄ = min

r,i,j

2↵
r,ij

d
i

+d
j

and
¯d = max

j
2dj, there exists C > 0 such that ⌘K = O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
) and

⇣K = O(C d̄Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
). As a result, operator norm ✏-approximations

of hx and gx such that khK � hxkop  ✏ and kgK � gxkop  ✏ can be calculated using
a basis of K = O(J(JC

d̄

✏
)

1
↵̄

) functions in O(J3+ 3
↵̄C

3d̄
↵̄ ✏�

3
↵̄

) operations.

This result shows that an approximation algorithm with computational cost poly-
nomial in 1

✏
is feasible for this class of models. The proof relies on applying Young’s

inequality (Johnstone, 2013, Theorem C.26) to bound the operator norm error in
terms of the sup norm error in the kernel function, which for wavelet approximations
can be bounded using the projection error bounds of Chen & Christensen (2015) and
the quadrature error bounds of Beylkin et al. (1991). Due to the accurate quadrature
properties of compactly supported wavelet multiresolution analyses, the error from
projection and the error from quadrature are of the same order in K, up to constants.
While a curse of dimensionality exists with respect to the number of variables entering
as arguments of the functions used as state variables, this is inherent to the function
class chosen, which permits a high degree of spatial irregularity as might be suitable
for geostatistical applications. When the operators are instead highly smooth, as
measured by the Hölder exponent of the integral kernels, the rate of convergence can
be quite rapid.

Remark. The dependence on J , which in most applications has the interpretation of
the number of independent functions which constitute the equilibrium objects (e.g.,
a value function, a distribution of individual states, and so on) and is usually a fixed
feature of the model, will in general be conservative, as it is based on the worst case
that all blocks of (BC , AC) contain an integral operator and that the difficulty of
approximation of each operator, measured by 2↵

r,ij

d
i

+d
j

, is roughly equal. If the row and
column corresponding to subspace j for all but a subset S of subspaces do not contain
an integral operator or contain only operators which are substantially smoother and so
require fewer basis functions to approximate to ✏ accuracy, and only K = O(S(JC

d̄

✏
)

1
↵̄

)

basis functions will be needed. This may be the case, for example, if one block contains
an operator which is substantially harder to approximate than others (due to being
higher-dimensional, less smooth, or both), in which case S = 1. In most applications,
J is fixed and very small, though it could grow, for example, if some components are
represented by a functional autoregressive model of high order.
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Algorithm 2 Construction of ( ˜BK , ˜AK
) using wavelet quadrature

Inputs: Block operators (B,A) = (BI , AI) + (BC , AC) s.t. (BC , AC) is composed of
integral operators

R
[0,1)dj Kr,ij(x, y)[.]dy 8i, j 2 1 . . . J, r 2 {B,A} satisfying Condition

3(i), {Kj}Jj=1 number of evaluation points for each block
Output: (

˜BK , ˜AK
) satisfying Condition 2

1. [Kr,ij]s,t  1p
K

i

K
j

Kr,ij(xs, yt) for xs, yt on evenly spaced grids of size Ki, Kj

over [0, 1)di , [0, 1)dj respectively, 8i, j, r. Construct matrices to represent kernels
of integral operators

2. (

˜BK
C , ˜AK

C )r,ij  (DWT[(DWT[Kr,ij])
⇤
])

⇤ 8i, j, r Construct approximate projec-
tion coefficients by discrete wavelet transform of rows then columns of Kr,ij,
using Coiflet wavelets basis satisfying Condition 3(ii)

3. (

˜BK
I , ˜AK

I )  ⇡K
(BI , AI)⇡K Represent identity operators by Ki ⇥ Kj identity

matrices

4. (

˜BK , ˜AK
) (

˜BK
I , ˜AK

I ) + (

˜BK
C , ˜AK

C ) Add components

6 Application, continued: Implementation and Eval-

uation

The above procedures may be applied to construct a linearized solution to the model
of trade, migration, and economic geography of Section 3.

6.1 Steady State and Linearization

As a testing ground for the algorithm, the geography model from Section 3 provides
the unique advantage that it is possible to construct a particularly tractable special
case, in which the geography is spatially homogeneous, in which the steady state and
projections of derivatives can be computed exactly. In particular, set shocks ⌫t(x) to
0 in all periods and conjecture that the initial distribution of population is uniform
over a one dimensional periodic domain identifiable with a (possibly unbounded)
interval in R, in the sense that population measure over any interval is given by
Lebesgue measure over the interval. Then it can be seen that a solution of the
static equilibrium component of the model is given by !t(x) which is constant over
x and t. Plugging this into the Bellman equation shows that, because c(x0 � x)
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is translation invariant, V (x) =

¯V constant is the unique solution of the Bellman
equation. Placing this in p(x0|x, V ), obtain that p(x0|x, ¯V ) / exp(c(x0 � x)) and so
is also translation invariant, and if c(x0 � x) = log g(x0 � x) for any nonnegative
function g(.), the transition equation for �t is given by a convolution with a density
proportional to g(.). For example, if c(x0 � x) = � 1

2c(x
0 � x)2, quadratic adjustment

costs, equation (3.2) is given by convolution with a Gaussian with standard deviation
c, and if c(x0�x) = �1

c
|x0�x|, equation (3.2) is given by convolution with a Laplace

distribution with dispersion parameter c. Because convolution is spatially invariant,
the unique steady state of this transition equation on a translation-invariant domain
is the uniform distribution, thus verifying the initial conjecture. For convenience,
note that in steady state the partition function f(x, ¯V ) is a constant, ¯f .

Given the existence of a steady state, the dynamics of the model local to this
point can be expressed by taking functional derivatives of the operators. First, the
transition equation is linear with respect to � with derivative given by a convolution
of the argument with density proportional to exp(c(x0 � x)), an operator I denote as
P [.] :=

R
1
f̄
exp(c(x0 � x) + � ¯V )[.]dx0. This can be interpreted as convolution with

a Gibbs distribution with potential given by the cost of moving: in the absence of
disturbances to the value of a different locations, given a current population at each
location, next period population spreads out by an amount proportional to the cost of
distance. The Bellman equation is linear in V with derivative equal to the identity and
has functional derivative with respect to V 0 given by �

f̄

R
exp(c(x0 � x) + � ¯V )[.]dx0

=

�P [.]. The transition equation has derivative equal to the identity with respect to
�0 and has derivative with respect to V given by �

R
G

1
f̄
exp(c(x0 � x) + � ¯V )[.] �

1
f̄
exp(c(x0 � x) + � ¯V )

�
f̄

R
exp(c(z0 � x) + � ¯V )[.]dz0dx, which equals �P � �PP . The

transition equation for ⌫ is linear in ⌫ and ⌫ 0, with derivative with respect to ⌫ given
by �[.] :=

R
�(x, z)[.]dz and ⌫ 0 by the identity. Finally, although no closed form

expression exists for !(x) in terms of �(x), its functional derivative d!
d�

with respect
to �(x), which is all that is needed, can be determined by implicit differentiation: the
exact formula is derived in Appendix D.1.

Together these calculations fully characterize the derivatives of the model’s equi-
librium conditions with respect to the state variables. Arranging these derivatives
into blocks with elements given by linear operators, the linearization of the equilib-
rium conditions of this model can be expressed in a form suitable for application of
our solution methods, as a pair of linear operators representing the derivatives of the
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equilibrium conditions of the model with respect to today’s state variables (�, ⌫, V )

and tomorrow’s state variables (�0, ⌫ 0, V 0
).

0

B@

2

64
0 0 I

P 0 �P � �PP

0 � 0

3

75 ,

2

64

d!
d�

I �P

I 0 0

0 I 0

3

75

1

CA (6.1)

In this pair of operators, the columns correspond to function valued state variables,
while the rows correspond to the linearized equations defining the equilibrium. In or-
der, these are the Bellman equation, the transition law for the population distribution,
and the law of motion for the function valued shock to the distribution of amenities.
The representation in terms of compact and identity operators clearly demonstrates
that the model is asymptotically diagonal, and under this parameterization, sufficient
conditions on structural parameters may be derived10 such that the model satisfies
Condition (1), and so provides a suitable case for application of the method.

6.2 Approximation and Results

To evaluate the approximation algorithm, several numerical comparisons are per-
formed for a translation invariant parameterization of this model using two separate
choices of subspace for projection ⇡K . One choice is Coiflet wavelets, implemented via
Algorithm (2). Another choice, particularly well suited to this model, is the Fourier
basis of trigonometric polynomials. It is demonstrated in Appendix D.3 that in this
case, not only can the projections be calculated exactly without additional quadra-
ture approximation, the functional derivatives of the policy operators gx and hx are
also available in semi-closed form for any bandlimited input function.11 This gener-
ates a near-exact benchmark for the error in the operator approximated by wavelet
quadrature, which I compute at different levels of K. Accuracy can be compared for
impulse responses to function valued shocks, as well as for simulations.

10See Appendix D.3 for discussion.
11The argument relies on the fact that every integral operator in this model takes the form of a

convolution, and so by the convolution theorem can be represented as a diagonal matrix with respect
to the Fourier basis representation of each input function, resulting in a block diagonal representation
which allows computation of the generalized Schur decomposition by a finite matrix operation at
each frequency. Minor numerical error is introduced into the computation by numerical calculation
of an integral term in the Fourier coefficients; see the complete model description in Appendix D.3
for full details.
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To evaluate the approximation algorithm, several numerical comparisons are per-
formed using both the Fourier and the wavelet representations of the model, at dif-
ferent levels of K, for an illustrative calibration of the model parameters described in
Appendix D.4. Accuracy can be compared for impulse responses to function valued
shocks, as well as for simulations. The Fourier and wavelet methods appear to exhibit
a high degree of agreement, whether expressed in squared error norm over the grid
points (a proxy for L2 norm, controlled by the theory) or in maximum norm over
grid points (not controlled by the theory). Error is largest for components and at
parameter values at which the component of the Fourier coefficients which must be
approximated numerically has substantial impact, suggesting that this quadrature
error may be a non-negligible factor contributing to the discrepancy between wavelet
and semi-closed form representations, but overall the discrepancy primarily measures
the effect of the wavelet quadrature and projection as controlled by Theorem (2). For
the Fourier representations, integer frequencies �K

2 to K
2 are used for each of J = 3

functions ⌫(x), �(x), and V (x), giving 3 ⇥ (K + 1) basis functions, for symmetry,
while for wavelets K grid points are used to represent the scaling function coefficients
for each function, with K given by a power of 2.

I evaluate the policy operator by constructing an impulse response to a smooth but
spatially localized shock "(.) to the exogenously evolving component of the model ⌫(.),
a scaled Gaussian spike centered at location 0.5, with functional form exp(50000(x�
0.5)2). This may represent a nearly exactly localized improvement, as might occur
in response to a local policy initiative or favorable productivity shock. As can be
seen in Figure (6.1), the response of amenity value over time and space, calculated
from K = 1024 using the Fourier representation spreads out rapidly from the initial
location and diffuses from a local region to an eventually larger and larger area, in
spite of a calibration of the exogenous spatial diffusion of amenities characterized by
high persistence and the relatively small spatial diffusion. Note that while the space
coordinate is represented on a line segment, the model is defined over a circle, so the
edges are connected.

The population response, displayed in Figure (6.1), follows the amenity shock but
is much more dispersed, and responds slowly, peaking over 10 periods later and then
declining gradually. The population in regions far from the center declines, as people
move towards the more desirable area, with a nadir over 20 periods later. Despite
the slow speed of adjustment, movements begin the first period after the shock, as
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Figure 6.1: Impulse Response of ⌫t(x), �t(x), & Vt(x) to "0(x) = exp(50000(x�0.5)2)

individuals anticipate the spread of the amenity over space and the possibility of
moving in the future to more desirable areas, which are desirable in part because they
provide the option value of moving even close to the center in the future at lower cost
and so taking advantage of the improved amenity there. This is displayed clearly in
the plot of welfare, Vt(x) in Figure (6.1), which jumps immediately, with peak at the
location of the shock but high values substantially more broadly dispersed, with a
nontrivial jump in welfare over the entire domain, as even regions for which the value
of the shock immediately and in the first few periods is essentially negligible face the
prospect of higher welfare in the future as the amenity spreads out and population
moves to regions positively affected by the shock.

Relative accuracy of the Fourier and wavelet representations of the model for the
above shock are measured in Table (1), for K = 256, 512, and 1024, for the maximum
error at any grid point over 80 periods of the impulse response.12 Note that even for
K = 512, the errors are already extremely small, with maximum pointwise error on
the order of 10�7 or smaller for ⌫t(x) a function with values ranging from 0 to 1, and
10

�8 for �t(x) and Vt(x), functions with range of about 0.1. The order of this error
decreases significantly for K = 1024, both for maximum and squared average error.

The clock time to compute the wavelet solutions, also displayed in Table (1),
is relatively fast and increases roughly in cubic proportion to K, taking under two
minutes for K = 512, including producing all figures and evaluation metrics, coded
in Matlab using the default QZ function on a 2011 Macbook Pro with 2.8 GHz Intel
i7 processor and 2 GB RAM. This level of speed and accuracy on a far from state of
the art setup suggests that the procedure may be useful in applications where it is

12Additional figures in Appendix G present the Euclidean norm difference (over an evenly spaced
grid) at each time point between the wavelet and Fourier representations at the different values of
K, a proxy for the L

2 norm.
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applied repeatedly, for example to estimate parameters. The Fourier representation
takes only a few seconds for any K, which should be expected as it allows calculating
solutions for each frequency separately and so takes time linear in K. This feature is
only a result of the special structure of this model and is not likely to generalize.

To consider the behavior of the model in response to more complex patterns
of input, I use it to produce simulated time paths. The shocks "t(x) are drawn
from a spatially correlated Gaussian process, a simulated fractional Brownian motion
(started at 0) with Hurst parameter 0.7 and so a degree of Hölder regularity no
greater than 0.7. Wavelet quadrature is easily capable of representing functions with
this degree of regularity and so the simulations are drawn from the representation of
the model with respect to a wavelet basis, with K = 512. Time paths are displayed
in Figure (6.2).

One feature which stands out is the low degree of smoothness of ⌫t(x), the persis-
tent shock process, and Vt(x), the welfare of residents at each location x, in contrast
to the fairly high degree of smoothness of population movements �t(x). This contrast
is as should be expected, because Vt(x) is a jump variable, and so adjusts immediately
to reflect changes in the state, while population is a predetermined variable, and so
changes only in response to expected future changes in welfare, which, because shocks
to amenity value are expected to be smoothed out over time, substantially discounts
the high frequency variations which impart roughness to the spatial distribution of
current welfare. This is in line with standard reasoning for rational expectations
decision problems: because moving is costly, transitory variation, expressed by the
rough local movements in amenity values, has minimal effect on forward looking
decisions. In contrast, low frequency changes, which are expected to be more persis-
tent, do induce population movements, and the simulation does show periods of time
where there are large population movements between regions. The simulation also
exemplifies the expressive power of functional methods, as it allows description of the
welfare and behavioral consequences of extremely finely detailed patterns of aggregate
shocks, which would be difficult to express even with smooth nonparametric function
representations, let alone low dimensional parametric approximations.
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Table 1: Numerical IRF Discrepancy, Fourier vs. Wavelet Representations
K max pointwise, ⌫t max pointwise, �t max pointwise, Vt Running Time (seconds)

256 0.0107 3.9549e-07 1.9362e-06 11.607549
512 3.4594e-07 5.0737e-08 7.6597e-08 96.187571
1024 8.9301e-11 1.2976e-08 1.9643e-08 376.833220

Figure 6.2: Simulated Geographic Equilibrium: Amenities, Welfare, and Population

7 Conclusion

The idea that heterogeneity matters for economic outcomes, not only at the individ-
ual level but through the set of interdependencies linking behavior at the individual
level to the environment faced by others, is a core principle in economics. Func-
tion valued stochastic processes, by describing how patterns of heterogeneity change
over time and relate to other variables, provide an analytical framework in which
these interdependencies can be modeled and evaluated directly rather than consid-
ering only aggregate variables. While describing economic decision making in these
environments can be challenging due to the high dimension of the relevant variables,
a substantial amount of information can be recovered by describing the problem lo-
cally near a point where infinite dimensional uncertainty disappears. A linearized
solution allows consideration of responses to any possible pattern or shape that can
be considered, accurately representing the behavior of the system in an infinite di-
mensional set of possible inputs. Moreover, for many systems, this response can be
calculated quickly and accurately, uniformly over all possible directions by projection
representations of the functional derivatives of the system.

The dynamics of economic interactions over space, typically challenging to de-
scribe due to the fact that people in different locations must respond differently to
the geographic patterns of economic activity induced by trade and spatially inho-
mogeneous regional disturbances, provide a demonstration of the rich patterns of
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relationships that can be captured by allowing decisions and distributions to respond
to the precise geographic pattern of shocks. Responses can differ substantially based
on distance, but also based on expectations of perceived future spatial distributions.
Although spatial interactions provide a case which illustrates the full importance of
allowing for response to potentially arbitrarily shaped patterns of heterogeneity, the
function valued approach seems promising for a wide variety of applications. These
include understanding the mechanisms behind the dynamics of income and wealth
inequality over business cycles, analyzing both through the relationship with capital
markets, as has been explored in existing studies of incomplete markets models with
aggregate shocks, as well as other potential economic mechanisms and policies. They
may also be useful for studying a variety of patterns of interaction which depend on
the entire shape of the distribution of heterogeneity, such as matching markets in
labor or other contexts or interactions through a social or economic network.

While for some applications, existing methods may be used to characterize the
dynamics of economic heterogeneity, albeit without explicit guarantees of accuracy,
the function valued approach may still be desirable as a framework for data analysis.
By explicitly allowing the model to incorporate uncertainty of arbitrary shape, the
models described allow a complete characterization of the variation in micro and
macroeconomic data and open the possibility of comparing the model directly to cross-
sectional micro data. Because linearized function valued models generate dynamics
consistent with functional linear processes, estimation and inference methods from
functional data analysis may be applied to evaluate them empirically. Given the
speed and accuracy of the solution methods, they may also open up the possibility
of using functional data methods to perform full information structural estimation of
models with heterogeneous agents.

Appendices to “Function Valued States”

The following supplemental appendix collects additional results and proofs of propo-
sitions in the main text. Appendix A demonstrates the existence and of the gener-
alized Schur decomposition for infinite dimensional operator pairs and Appendix B
provides perturbation bounds demonstrating continuity with respect to approxima-
tions of those operators. Appendix C provides supplemental results giving conditions
and strategies for ensuring differentiability and asymptotic diagonality of models so
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that the procedures in the main text may be applied and demonstrates additional
properties including measurability and uniqueness of solutions. Appendix D provides
analytical results for the economic geography example including derivatives, steady
state, and exact characterization of solutions. Appendix E provides illustrative suffi-
cient conditions ensuring the existence of differentiable recursive solutions in nonlinear
dynamic stochastic economies with function valued states, generalizing the results of
Jin & Judd (2002) to the Hilbert space setting. Appendix F collects all proofs and
Appendix G collects additional figures.

Notation

H, with any subscript, is assumed to be a complete separable Hilbert space. B, with
any subscript, is Banach space. The notation k k is overloaded: if the object a is an
element of B, kak is the norm of a in B, and if a is in a Hilbert space H, kak = ha, ai 12
is the norm of a in H, where h , i is the associated inner product. If a 2 Ha but it is
not clear from context the space on which a lives, the norm may be denoted kakH

a

.
L(Ha ! Hb) is the space of bounded linear operators from Ha to Hb, equipped with
the operator norm: for A 2 L(Ha ! Hb), kAk = sup

kxkH
a

=1
kAxkH

b

. If clarification is

required, this norm may be denoted kAkop. A⇤ denotes the (Hermitian) adjoint of A:
8x 2 Ha, y 2 Hb, hAx, yi = hx,A⇤yi. A sequence of operators Ai 2 L(Ha ! Hb),
i 2 N is said to converge in operator norm topology, or ‘in norm’ to A if kAi�Ak ! 0.
For � a Cauchy contour in the extended complex plane C1 (see Conway (1978, Ch.
1 S. 6)) and f(�) : C1 ! L(Ha ! Hb) a function from one complex variable to a
linear operator,

R
� f(�)d� is the path integral of f(�) over the curve �, as defined in

Gohberg et al. (1990, Ch. I). I is the identity operator: if the space Ba on which
it acts needs to be specified, it is written IB

a

. For A 2 L(Ha ! Hb), Im(A) is the
image of A and Ker(A) is the kernel of A. For a pair of bounded operators (B,A)

each in L(Ha ! Hb), following Gohberg et al. (1990), define the spectrum �(B,A)

as those � 2 C such that �A � B is not invertible, accompanied by the point 1
if and only if A does not have bounded inverse, and the resolvent set ⇢(B,A) as
C1\�(B,A). An operator pair is said to be �-regular if for some nonempty subset
� ⇢ C1, � ⇢ ⇢(B,A). Brackets A[h] may optionally be used to denote that h is
an argument of linear operator A, parentheses A(h) generally denote that h is an
argument of (possibly) nonlinear operator A. For nonlinear functions and operators,
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F (a, b), Fa and Fb are the partial derivatives with respect to arguments a and b

respectively. For a variable x, which may be a function, x0 denotes the variable in
the next time period, not the derivative. The Fourier transform of a function f(x) is
denoted with the scale convention ˆf(!) := F [f(x)](!):=

R
exp(�2⇡◆!x)f(x)dx.

A Existence and properties of a generalized Schur

decomposition for pairs of bounded operators

A.1 Existence

The construction of a solution for the linear expectational difference equation defined
by a linear or linearized rational expectations model in finite dimensions relies on
the ability to partition the state space and the equilibrium equations into ‘stable’ and
‘unstable’ components which may be treated separately. This is generally achieved by
either a Jordan decomposition, generating block-diagonal matrices, as in Blanchard
& Kahn (1980) or by a generalized Schur decomposition, generating upper-triangular
matrices,13 as in Klein (2000). In practice, the latter has become preferred, as the
Jordan decomposition of a matrix is not in general continuous while the generalized
Schur decomposition, which is generated by unitary matrices, exhibits numerical sta-
bility in theory and practice. Such stability is particularly desirable in the infinite
dimensional case, as closed form solutions for the eigenfunctions are not in general
feasible and finite dimensional numerical procedures must by necessity induce some
error into the representation of the operator pair of interest.

While generalization of the Jordan decomposition to infinite dimensional operator
pairs is well established (Kato, 1976; Gohberg et al. , 1990, Ch IV) and the Schur de-
composition for a single infinite dimensional operator has also been defined (Gohberg
et al. , 1990, Ch II.3), an analogue of the generalized Schur decomposition for pairs
of infinite dimensional linear operators has not, to the best of my knowledge, been
described. As in the case of the Schur decomposition of a single operator, extension
to the infinite dimensional case is slightly delicate, as the existence of the Schur or
generalized Schur decomposition is based on an iterative construction which extends
only in certain cases to an uncountable state space. In particular, the Schur decompo-

13This decomposition is often referred to as the QZ decomposition, in reference to the QZ algorithm
often used to compute it. See Golub & Van Loan (1996).
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sition may be extended to compact operators but not to arbitrary bounded or closed
operators, for which a Jordan decomposition exists but a Schur decomposition may
not. For the purposes of constructing an analogy of the generalized Schur decom-
position which permits extension of rational expectation solution procedures, there
are at least two ways around this difficulty. The first, and simplest, is to note that
while solution requires splitting the domain into ‘forward’ and ‘backward’ subspaces,
for a stationary solution there is no requirement that the restriction of the operator
to these subspaces itself take upper triangular form. Instead, one can construct a
block upper triangular decomposition which preserves the desirable feature of being
generated by unitary transformation while eschewing the necessity to make restric-
tive compactness assumptions. Alternately, one may construct a generalized Schur
decomposition analogously to the infinite dimensional Schur decomposition, which
does preserve an upper-triangular structure within blocks, under a modified and so
slightly less onerous compactness condition than in the single operator case. In the
following, I show existence of a blockwise decomposition under general conditions,
and also decomposition which is upper triangular within blocks under a condition on
compactness of certain transformations of the operator pair which does not imply that
both operators are compact, and in particular allows the pertinent example of the
standard eigenvalue problem in which one of the operators in the pair is the identity
operator, which is not compact on an infinite dimensional space. This construction
also has the advantage that it implies compactness of certain Schur components and
so generates a solution for the law of motion which is itself compact.

Formally, let (M,G) be a pair of bounded linear operators acting between complex
Hilbert spaces HX and HY , i.e. M 2 L(HX ! HY ) G 2 L(HX ! HY ). Following
Gohberg et al. (1990), define the spectrum �(M,G) as those � 2 C such that �G�M
is not invertible, accompanied by the point1 if and only if G does not have bounded
inverse, and the resolvent set ⇢(M,G) as C1\�(M,G), where C1 is the extended
complex plane with the standard topology (see Conway (1978, Ch. 1 S. 6)).

Definition 4. An operator pair is said to be �-regular (with respect to a set �) if for
some nonempty subset � ⇢ C1, � ⇢ ⇢(M,G).

Assume � is a Cauchy contour (c.f. Gohberg et al. (1990, p.6)) with inner
domain �+ and outer domain ��, and that (M,G) is �-regular. For concreteness,
we will often take � to be the positively oriented complex unit circle, in which case
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�-regularity means that the spectrum does not contain � such that |�| = 1. From a
modeling perspective, this ensures stationarity by ruling out unit roots; this particular
choice is not required to ensure existence of a generalized Schur decomposition. By
Gohberg et al. (1990) Theorem IV.1.1, the above assumptions ensure the existence
of (possibly oblique) projection operators ⇡1: HX ! HX and ⇡2: HY ! HY which
partition HX and HY into Im ⇡1 � Ker ⇡1 and Im ⇡2 � Ker ⇡2 respectively, and the
operator pair (M,G) into components

(M,G) =

 "
M1 0

0 M2

#"
G1 0

0 G2

#!
: Im ⇡1 �Ker ⇡1 ! Im ⇡2 �Ker ⇡2 (A.1)

such that (M1, G1) and (M2, G2) are �-regular, �(M1, G1) = �(M,G) \ �+ and
�(M2, G2) = �(M,G) \ ��. In words, this says one can separate the pair into
a component with spectrum inside some domain and a component with spectrum
outside.

Assume in addition that 0 2 �+ and 1 2 ��. By the above result and the defi-
nition of the resolvent, this implies that G1 and M2 are invertible on their respective

domains. In particular, E =

 
G�1

1 0

0 M�1
2

!
: Im ⇡2�Ker ⇡2 ! Im ⇡1�Ker ⇡1 is a

bounded invertible operator and we may define the partition

(EM,EG) =

 "
⌦1 0

0 I2

#"
I1 0

0 ⌦2

#!
: Im ⇡1 �Ker ⇡1 ! Im ⇡1 �Ker ⇡1 (A.2)

where ⌦1 = G�1
1 M1 and ⌦2 = M�1

2 G2. These operators have the following rela-
tionship with (M1, G1) and (M2, G2):

Lemma 1. �(M1, G1) = �(⌦1), and 1
�
2 �(⌦2) if and only if � 2 �(M2, G2) (where

1
1 may be defined to equal 0)

Proof. Suppose � is in the resolvent set of ⌦1. Then ⌦1 � �I1 has some bounded
inverse Z. Then �ZG�1

1 satisfies �ZG�1
1 (�G1 � M1) = Z(⌦1 � �I1) = I1 and

�(�G1 �M1)ZG
�1
1 = �G1G

�1
1 (�G1 �M1)ZG

�1
1 = G1(⌦� �I1)ZG�1

1 = G1G
�1
1 = I1,

so � 2 ⇢(M1, G1). That is, ⇢(⌦1) ⇢ ⇢(M1, G1). Next, suppose � 2 ⇢(M1, G1). Then
�G1 �M1 has a bounded inverse Z, and �ZG1 satisfies �ZG1(⌦� �I1) = Z(�G1 �
M1) = I1 and �(⌦ � �I1)ZG1 = �G�1

1 G1(⌦ � �I1)ZG1 = G�1
1 (�G1 �M1)ZG1 =

G�1
1 G1 = I1, and so ⇢(M1, G1) ⇢ ⇢(⌦1). Combining, ⇢(M1, G1) = ⇢(⌦1) and so
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�(M1, G1) = �(⌦1). Similar calculations show 1
�
2 �(⌦2) if and only if � 2 �(M2, G2).

If 1 2 �(M2, G2), G2 is not invertible and so M�1
2 G2 � 1

1I2 = M�1
2 G2 must also

have nontrivial kernel, and so be noninvertible.

With this notation, it is possible to characterize conditions under which the oper-
ator pair (M,G) has a generalized Schur decomposition. As our construction makes
use of complete orthonormal bases, we assume now that (M,G) are operators between
separable Hilbert spaces HX and HY .

Lemma 2. Let (M,G) be a pair of bounded operators M 2 L(HX ! HY ) G 2
L(HX ! HY ) �-regular with respect to a Cauchy curve with inner domain �+ such
that 0 2 �+ and outer domain �� such that 1 2 ��. Define projectors ⇡1 and
⇡2 as in A.1 with respect to �. Then, there exist unitary operators Q = [Q1, Q2

] :

Im⇡2 �HY /Im⇡2 ! F1 � F2 and U = [U1, U2
] : Im⇡1 �HX/Im⇡1 ! E1 � E2 such

that (M,G) has the following block-wise generalized Schur decomposition

(QMU⇤, QGU⇤
) =

 "
M11 M12

0 M22

#
,

"
G11 G12

0 G22

#!

from E1 � E2 ! F1 � F2

where E1, E2, F1, and F2 are spaces such that there exist linear isometric iso-
morphisms from Im⇡1 ! E1, HX/Im⇡1 ! E2, Im⇡2 ! F1, and HX/Im⇡2 ! F2,
respectively. Further, �(M11, G11) = �(M1, G1) = �(M,G) \�+ and �(M22, G22) =

�(M2, G2) = �(M,G) \��.

Remark. The precise identity of the spaces E1, E2, F1, and F2 need not be considered
for this result. However, a canonical choice of spaces would be to allow E1 = Im⇡1,
E2 = HX/Im⇡1, F1 = Im⇡2, F2 = HY /Im⇡2, in which case the Schur decomposition
acts on the same space as (M,G).

Proof. See Appendix F.

A.2 Compactness and Triangular Decompositions

Slightly stronger assumptions than used in the above can yield stronger results. In
particular, the assumption of compactness of ⌦1 and ⌦2 may permit the block trian-
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gular decomposition to be extended to a triangular decomposition within each block,
as in the infinite dimensional Schur decomposition in Gohberg et al. (1990). This
provides a link to the finite dimensional method, but is nowhere necessary for the ap-
plication of the decomposition considered. However, compactness of the components
does provide a useful sufficient condition for the necessary conditions, and also ensures
the compactness of the solution operators, which is a condition commonly imposed
for the validity of estimators of infinite dimensional operators: see, e.g., Bosq (2000).

If this refinement is not needed, we may instead operate under a strictly weaker
assumption: viz. that the spectrum of (M,G) is bounded away from �. To see that
this is weaker, note that compactness implies that the unique accumulation point
of the spectrum is at 0, and so by 1, the spectra of ⌦1 and ⌦2 and, as a result, of
(M,G) must neither be inside of � or have limit point in �. Formally, we define a
block triangular decomposition as follows. For notational convenience and analogy
to the finite dimensional case, we take the decomposition to be defined as a pair on
L(HX ! HY ) rather than over isometrically isomorphic spaces.

Lemma 3. Let (M,G) be a pair of bounded operators M 2 L(HX ! HY ) G 2
L(HX ! HY ) �-regular with respect to a Cauchy curve with inner domain �+ such
that 0 2 �+ and outer domain �� such that1 2 ��. Define projectors ⇡1 and ⇡2 as
in A.1 with respect to � and ⌦1 and ⌦2 as in A.2. Suppose in addition that ⌦1 and ⌦2

are compact operators. Then, there exist unitary operators Q = [Q1, Q1?, Q2, Q2?
] :

F1 � F?
1 � F2 � F?

2 ! F1 � F?
1 � F2 � F?

2 and P = [P 1, P 1?, P 2, P 2?
] : E1 �E?

1 �
E2�E?

2 ! E1�E?
1 �E2�E?

2 such that (M,G) has the following (generalized Schur)
decomposition

(M,G) =

0

BBBB@

2

66664

M11 M off
11 M12 .

0 M?
11 . .

0 0 M22 M off
22

0 0 0 M?
22

3

77775
,

2

66664

G11 Goff
11 G12 .

0 G?
11 . .

0 0 G22 Goff
22

0 0 0 G?
22

3

77775

1

CCCCA

from E1 � E?
1 � E2 � E?

2 ! F1 � F?
1 � F2 � F?

2

where E1, E?
1 , E2, E?

2 and F1, F?
1 , F2, F?

2 are closed linear subspaces of HX and HY ,
respectively. Further, with respect to the orthonormal bases {p̃1i }1i=1 of E1 and {q̃1i }1i=1

of F1 generating the rows of P 1 and Q1, respectively, (M11, G11) are upper triangular
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with (M11)jj/(G11)jj = �j where �j is the jth nonzero generalized eigenvalue (in some
arbitrary fixed order) repeated a number of times equal to its multiplicity in �(M1, G1),
and similarly with respect to the orthonormal bases {p̃2i }1i=1 of E2 and {q̃2i }1i=1 of
F2 generating the rows of P 2 and Q2, respectively, (M22, G22) are upper triangular
with (M22)jj/(G22)jj = �j where �j is the jth finite generalized eigenvalue repeated a
number of times equal to its multiplicity in �(M2, G2). In addition, �(M?

11, G
?
11) ⇢ {0}

and �(M?
22, G

?
22) ⇢ {1}.

Remark. (G?
11)

�1M?
11 and (M?

22)
�1G?

22 are examples of Volterra operators, as they are
compact and quasinilpotent (with spectrum equal to zero only). As a result, they may
be shown to be unitarily equivalent to a particular continuous analogue of an upper-
triangular operator with respect to a (not necessarily countable) increasing chain of
projections on subspaces of HX (Gohberg et al. , 1993, Thm. XXI.1.5). In principle,
a fully triangular representation of (M,G) in which (M?

11, G
?
11) and (M?

22, G
?
22) are

also upper-triangular with respect to some chain of subspaces could be generated via
an analogue for operator pairs of Gohberg et al. (1993, Thm. XXI.1.2). Such a
decomposition is unnecessary for our purposes, as block-triangular structure is suffi-
cient for representing a solution of the equilibrium conditions and the approximation
techniques to be used do not take advantage of the continuous structure provided by
the more intricate decomposition.

Proof. See Appendix F.

B Perturbation Theory for the Generalized Schur

Decomposition

Perturbation for generalized Schur subspaces associated with a subset of the spectrum
is covered in Stewart (1973) for perturbations measured in Frobenius norm. In this
section, I extend the results to perturbation in operator norm. In addition to bounds
on the error in terms of the subspace angle between the approximate and true deflating
subspaces, this section will also consider approximation of the Rayleigh components
of the operator pair corresponding to these subspaces. First, set up the generalized
Schur subspace approximation problem exactly as in Stewart (1973).

Let (A,B) 2 L(H1 ! H2,H1 ! H2) and unitary operators X = (X1, X2) H1 !
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H1 and Y = (Y1, Y2) H2 ! H2 decompose (A,B) as

(Y ⇤AX, Y ⇤BX) =

 "
A11 A12

A21 A22

#
,

"
B11 B12

B21 B22

#!

To find a perturbation bound, we search for the minimal rotations

UX =

 
I �P ⇤

P I

! 
(I + P ⇤P )

�1/2
0

0 (I + PP ⇤
)

�1/2

!

UY =

 
I �Q⇤

Q I

! 
(I +Q⇤Q)

�1/2
0

0 (I +QQ⇤
)

�1/2

!

such that X 0
= (X 0

1, X
0
2) = XUX and Y 0

= (Y 0
1 , Y

0
2) = Y UY generate subspaces

R(X 0
1) = X ⇢ H1 and R(Y 0

1) = Y ⇢ H2 which form a deflating pair of (A,B).
A pair of subspaces X ,Y form a deflating pair if and only if the transformed pair
is block upper triangular with respect to these subspaces, i.e. (Y 0⇤

2 AX 0
1, Y

0⇤
2 BX 0

1) =

(0, 0). This is equivalent to

QA11 � A22P = A21 �QA12P

QB11 � B22P = B21 �QB12P (B.1)

In order to find (Q,P ) which satisfy the above condition and are small relative to
perturbations in operator norm, define a norm over the space of operator pairs over
subspaces conformable to the pair (Q,P ) as the largest operator norm of an operator
in the pair, i.e.

k(Q,P )kB = max(kQk, kPk)

If we can show that the conditions of Stewart (1973) Theorem 3.1 are satisfied for
(B.1) using this norm, then this theorem will provide a bound on the operator norm
of the rotation needed to generate such a decomposition. Define

T (Q,P ) =

⇣
QA11 � A22P QB11 � B22P

⌘

g =

⇣
A21 B21

⌘
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'(Q,P ) = ( QA12P QB12P )

To show a quadratic bound for '(Q,P ), begin with the first term:

k'1(Q,P )k  kQk kPk kA12k
 k(Q,P )k2B kA12k

Combining with identical calculations for the second term yields quadratic bound

k'(Q,P )kB  ⌘k(Q,P )k2B (B.2)

where
⌘ = k(A12, B12)kB

To demonstrate the Lipschitz property for this operator, again note

k'1(Q,P )� '1(
˜Q, ˜P )k 

���Q� ˜Q
��� kPk kA12k+

��� ˜Q
���
���P � ˜P

��� kA12k
 2max(k(Q,P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q,P � ˜P )kB kA12k

Combining with identical calculations for the second term gives Lipschitz condition

k'(Q,P )� '( ˜Q, ˜P )kB  2⌘max(k(Q,P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q,P � ˜P )kB (B.3)

These demonstrate that conditions (i) and (ii) of Theorem 3.1 in Stewart (1973)
continue to hold for the norm k.kB

Again defining

� = kgkB

� = kT�1k�1
B

one obtains

Lemma 4. Suppose T (Q,P ) = g�'(Q,P ) with T , g, and ' defined as above, where
' satisfies the quadratic bound and Lipschitz conditions. Let � > 0 and �⌘/�2 < 1/4.
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Then
k
⇣

Q, P
⌘
kB < 2

�

�

To determine precisely how the above theorem imposes bounds on errors in Schur
subspaces, it is necessary to examine the stability properties of the term �. Define

dif(A,B) = dif(
A11 B11

A22 B22

) = kT�1k�1
B (B.4)

Note that this operator depends on only the block diagonal terms of the pair
(A,B). Define the perturbation (E,F ) 2 L(H1 ! H2,H1 ! H2) and define a parti-
tion of the operator conformable with that of (A,B) by (Eij, Fij) = (Y H

i EXj, Y H
i FXj).

We would like to define a bound on the term

dif(A+ E,B + F ) = dif(
A11 + E11 B11 + F11

A22 + F22 B22 + F22

)

Using the alternate characterization dif(A,B) = inf
kZkB=1

kT (Z)kB where Z 2 B, one

can derive lower and upper bounds

dif(A,B) + ⌫(E,F ) � dif(A+ E,B + F ) � dif(A,B)� ⌫(E,F )

where
⌫(E,F ) = max(kE11k+ kE22k, kF11k+ kF22k)

Combing this bound with the previous lemma, obtain

Theorem 3. Let (A,B) and (E,F ) 2 L(H1 ! H2,H1 ! H2) and X = (X1, X2)

H1 ! H1 and Y = (Y1, Y2) H2 ! H2 be unitary operators such that R(X1) and
R(Y1) form a deflating pair of subspaces for the operator pair (A,B). Suppose these
operators partition the pairs such that

(Y HAX, Y HBX) =

 "
A11 A12

0 A22

#
,

"
B11 B12

0 B22

#!

(Y HEX, Y HFX) =

 "
E11 E12

E21 E22

#
,

"
F11 F12

F21 F22

#!
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Define
� = dif(A,B)� ⌫(E,F )

along with

� = k( E21 F21) kB
and

⌘ = k(A12 + E12, B12 + F12)kB
Suppose � > 0 and �⌘/�2 < 1/4. Then
Then there is a pair of operators (Q,P ) with

���
⇣

Q, P
⌘���

B
 2�

�

such that
X 0

1 = (X1 +X2P )(I + P ⇤P )

�1/2

Y 0
1 = (Y1 + Y2Q)(I +Q⇤Q)

�1/2

and R(X 0
1) and R(Y 0

1) form a pair of deflating subspaces for (A+ E,B + F ).

This is essentially identical to Theorem 5.7 of Stewart (1973) aside from the def-
inition of the norms via which the terms are defined and the resulting difference in
the lower bound on �.

Via Theorem 2.7 in Stewart (1973), we know that

k sin⇥(R(X1),R(X 0
1))k  k tan⇥(R(X1),R(X 0

1))k = kPk

k sin⇥(R(Y1),R(Y 0
1))k  k tan⇥(R(Y1),R(Y 0

1))k = kQk

both of which are less than
���
⇣

Q, P
⌘���

B
. As a result, we have the following corollary

Corollary 1. Suppose (A,B), (E,F ), X and Y satisfy the conditions of the theorem
above. Then the operator pair (A+E,B + F ) has a right generalized Schur subspace
R(X 0

1) such that kProjX0
1
� ProjX1k2  2�

�
and associated left generalized Schur

subspace R(Y 0
1) such that kProjY 0

1
� ProjY1k2  2�

�

As a result, for appropriately small approximation error in the operator pair of
interest, a fixed, well-separated, primary generalized Schur subspace (and associated
generalized Schur functions or vectors whose range spans it) of the perturbed pair
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differs by an amount which is on the order of the operator norm of the perturbation
from the corresponding true subspace (and associated functions). This dependence
on the order of the operator norm of the error may be particularly useful in the case of
large or infinite dimensional subspaces, for which the Frobenius norm of the error may
increase as the square root of the dimension of the subspace. One loses, however, the
set of sharp characterizations of the difference term � in terms of spectral properties
of the operator to be approximated which may be obtained when it is defined via
the Frobenius norm. This seems necessary in general, however, as the Frobenius
or Hilbert-Schmidt norm may fail to be finite in the infinite dimensional case for
otherwise well-behaved operators.

To bound the approximation error in the components (A11, B11) induced by an
approximation, it is helpful to introduce an additional pair of subspaces to correspond
to the right deflating pair R(X1) and R(Y1). Defining (X1, X2) and (Y1, Y2) as above
so R(X1) and R(Y1) form a deflating pair, we look for operators V1 and U2 and R

and S with V1 = Y1 + Y2R⇤ and U2 = X2 �X1S to solve

(V1, Y2)
⇤A(X1, U2) =

 
I R

0 I

! 
A11 A12

0 A22

! 
I �S
0 I

!
=

 
A11 0

0 A22

!

(V1, Y2)
⇤B(X1, U2) =

 
I R

0 I

! 
B11 B12

0 B22

! 
I �S
0 I

!
=

 
B11 0

0 B22

!
(B.5)

This holds if there exist S, R such that

A11S �RA22 = A12

B11S �RB22 = B12

Theorem 5.9 in Stewart (1973) notes that if the operator T is nonsingular, there
exist S and R which solve this equation, and so (X1, U2) and (V1, Y2), which are not
in general unitary, though are nonsingular, block diagonalize (A,B). Further, by
the definitions of V1 and U2, one has kV1k = k sec⇥(R(V1),R(Y1)k = k sec⇥1k and
kU2k = k sec⇥(R(U2),R(X2)k = k sec⇥2k .

This block diagonalization can be used along with the perturbation formula to
construct bounds on the approximation error in (A11, B11). Consider a perturbation
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(E,F ) of (A,B) and define

((V1, Y2)
⇤E(X1, U2), (V1, Y2)

⇤F (X1, U2)) =

  
E11 E12

E21 E22

!
,

 
F11 F12

F21 F22

!!

so that perturbed operator pair satisfies

((V1, Y2)
⇤
(A+ E)(X1, U2), (V1, Y2)

⇤
(B + F )(X1, U2)) =  

A11 + E11 E12

E21 A22 + E22

!
,

 
B11 + F11 F12

F21 B22 + F22

!!
(B.6)

then, following Stewart & Sun (1990) VI.2.15, we have

Theorem 4. Define

� = dif(A,B)�max(kE11k+ kE22k, kF11k+ kF22k)

along with

� = k( E21 F21) kB
and

⌘ = k(E12, F12)kB
Suppose � > 0 and �⌘/�2 < 1/4.
Then there is a pair of operators (Q,P ) with

���
⇣

Q, P
⌘���

B
 2�

�

such that
X 0

1 = X1 + U2P

Y 0
2 = Y2 + V1Q⇤
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satisfy

((V1, Y
0
2)

⇤
(A+ E)(X 0

1, U2), (V1, Y
0
2)

⇤
(B + F )(X 0

1, U2)) =  
A11 + E11 + E12P E12

0 A22 + E22 +QE12

!
,

 
B11 + F11 + F12P F12

0 B22 + F22 +QF12

!!

(B.7)

and so (A0
11, B

0
11) =(A11 + E11 + E12P,B11 + F11 + F12P ) form the generalized

Rayleigh quotients of the perturbed operator pair, and as a result, we have

kA11 � A0
11k  kE11 + E12Pk  kE11k+ kE12k2�

�

kB11 � B0
11k  kF11 + F12Pk  kF11k+ kF12k2�

�
Proof. Existence of a unique solution (Q,P ) with the specified properties follows if

there exist (Q,P ) such that left multiplying (B.6) by

 
I 0

Q I

!
and right multiplying

by

 
I 0

P I

!
sets the lower left elements in (B.7) to 0. This holds if there is unique

solution to
 

Q(A11 + E11) + (A22 + E22)P

Q(B11 + F11) + (B22 + F22)P

!
=

 
E21

F21

!
+

 
QE12P

QF12P

!

Existence of a unique solution here follows from application of Theorem 3.1 in
Stewart (1973), the Lipschitz and norm bound shown for the quadratic component
above, and the lower bound on � which lower bounds the minimum singular value of
the lefthand side.

C Supplementary Results

C.1 Measurability of Solutions

It can be shown that the pointwise in x definition of a recursive solution to a rational
expectations model with function valued states generates a measurable stochastic
process for (xt, yt) under mild measurability conditions on the functions chosen.
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Condition 4. (i) Let {zt}1t=0 be an i.i.d. sequence on the infinite product of inde-
pendent copies of (Bz,⌃z, µz

) and initial value x0 be defined on (Bx,⌃x) with distri-
bution µx

0 , where ⌃x is a sigma field containing ⌃z. (ii) Fix � 2 R. Suppose h(x, �) is
(Bx,⌃x) ! (Bx,⌃x) measurable, g(x, �) is (Bx,⌃x) ! (By,⌃y) measurable for some
⌃y, and F is measurable with respect to the product sigma field ⌃x ⌦ ⌃y ⌦ ⌃x ⌦ ⌃y

on Bx ⇥ By ⇥ Bx ⇥ By

The measurability restrictions on h and g do impose some nontrivial limitations
on the class of solutions to be considered by ruling out auxiliary randomness in the
policy functions for aggregate variables beyond that included in z. For certain classes
of models, randomization may be necessary to ensure existence of a solution, which
may require expansion of the set of state variables: see Cao (2016) for discussion.
Because the model will be solved by approximating near a point with no aggregate
variability, the method cannot accommodate models which have no solution without
aggregate randomness.

Proposition 1. The series defined recursively by x0 ⇠ µx
0, x2,t+1 = h2(x2,t) + �zt+1,

x1t+1 = h1(xt, �), yt = g(xt, �) 8t � 0, where h, g are a recursive solution satis-
fying Condition 1, is measurable with respect to the infinite product sigma field and
EF (x, g(x, �), h(x, �)+�⌘z0, g(h(x, �)+�⌘z0, �), �) coincides with the conditional ex-
pectation of F (xt, g(xt, �), h(xt, �)+ �⌘zt+1, g(h(xt, �)+ �⌘zt+1, �), �) at time t given
xt = x.

Proof. See Appendix F.

C.2 Weakening the Fréchet differentiability assumption

In practice, the assumption that an operator F : H1 ! H2 be Fréchet differentiable
can be overly strong for many applications. Fortunately, in the cases where this
assumption may not hold, there exist several modified or weaker notions for which
the method described can still be used, with only slightly weaker guarantees. The
particular case where this is likely to go awry is when the operator is defined only
over a space of densities, which come with multiple desiderata in addition to the
requirement tht they live in a Hilbert space, viz, nonnegativity and the requirement to
integrate to 1. A simple way to accomodate the latter is by representing ˜f = f� ¯f , the
deviation of density f from a fixed value ¯f (usually the steady state), as an element
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of L2
0, the set of square integrable functions which integrate to 0. The positivity

condition creates much greater difficulties.
As an illustrative example, consider the following nonlinear operator G : f(x) 2

F✏ ✓ L2
0 ! L2

G[f(.)](y) :=

Z
g(y)

f(x)
dx

where F✏ is {f(x) 2 L2
0 : f(x) > ✏} for some ✏ > 0, a set of square integrable densities

uniformly bounded below, and g(y) 2 L2. Suppose there exists ¯f 2 F✏ at which we
are interested in taking the derivative of G, without loss of generality denoted 0 2 L2

0.
To be Fréchet differentiable, it would be necessary that for some r > 0, it is the case
that there exists a linear operator G0 such that lim

kfk!0

kG(f)�G(0)�G0[f ]k
kfk where this holds

for any path with kfk ! 0. Unfortunately, for any r, 9fr 2 L2
0 such that kfk < r

but ess inf f(x) < ✏ (or indeed, less than any fixed constant, including 0). That is,
F✏ has empty interior with respect to the L2

0 norm, as does any uniformly bounded
subset of L2. As a result, a limit does not exist and this operator does not have a
Fréchet derivative.

There are several solutions which may be feasible, depending on the class of op-
erators.

Work in another Hilbert space

The space of square integrable density functions is not itself a Hilbert space, but
there do exist several alternate spaces that can be used to represent densities while
maintaining a Hilbert space structure. Petersen & Müller (2016) survey some of
the difficulties that this causes, and suggest the use of the corresponding quantile
functions, endowed with a norm and inner product. One possibility suggested in the
context of perturbative solutions of economic models by Chung (2007) is the space
of functions h(x) 2 L2 where a density is represented as a function f(x) = h(x)2.
Disadvantages of this space are that expectations are no longer linear operators,
representations of densities in this space are not unique, and the space of densities,
with

R
h(x)2dx = 1 is not a linear vector space, and so additive perturbations must

take one outside the space of densities, which can cause issues with operators not well
defined for objects which are not densities.

Another useful choice is the “Bayes Hilbert Space” of log densities (equivalently,
of infinite exponential family representations of densities) equipped with a particular
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set of vector space operations and inner product which ensures that the space has a
Hilbert space structure: see Seo (2017) for details and results. One again loses the
linearity of expectations, but preserves uniqueness (in the sense of isometric isomor-
phism to L2

0). This space retains the properties of a vector space and ensures that
an open ball in this vector space may correspond to a set of densities bounded away
from 0, which allows operators like G remain Fréchet differentiable at any point in
F✏. For these reasons, this appears to be a promising avenue for ensuring Hilbert
space structure and Fréchet differentiability in the context of operators defined over
densities.

To illustrate, letting ˜f denote the element of the Bayes Hilbert space corresponding
to density f , we may rewrite G as

G[

˜f(.)](y) :=

Z
g(y)

R
exp(

˜f(s))ds

exp(

˜f(x))
dx

and the Fréchet derivative of this operator with respect to ˜f at a point ¯f in the
direction of perturbation h(.) as

Gf̄ [h(.)] := �
Z

exp(

¯f(s))ds

Z
g(y)

[h(x)]

exp(

¯f(x))
dx+

Z
exp(

¯f(s))[h(s)]ds

Z
g(y)

exp(

¯f(x))
dx

Extend Hadamard derivatives

For operators defined or differentiable only on subsets (not necessarily subspaces)
of infinite dimensional Banach spaces, it may sometimes be desirable to consider the
Hadamard derivative (see Flett (1980)) tangential to a set, which requires a derivative
to be defined uniformly only over compact sets and so is weaker than the Fréchet
derivative, which requires uniformity over closed balls, which in infinite dimensions
are not compact. While the chain rule and a version of the implicit function theorem
also apply for this class of derivatives, and so a linear approximation may be defined
by the same equations with the Hadamard in place of the Fréchet derivative (and
the derivatives exactly coincide on finite dimensional spaces), the Taylor expansion
will in be defined only over the subset on which a Hadamard derivative exists, and
have a remainder with size dependent on the direction of the path of the approach,
rather than just the norm. In the case where the domain contains an open ball in the
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larger infinite-dimensional Banach space, the domain restriction can then be removed
by extending the derivatives by the Hahn-Banach theorem to a larger space in a
canonical way. If a solution does exist and is Hadamard differentiable, the Hadamard
derivatives of the operators of interest will coincide on their domain with the extended
operators on the total space. When this is the case, the same first order approximation
may be constructed and approximated by the algorithm provided, but will be valid
only for directions in which Hadamard differentiability holds.

The disadvantage of this strategy is that it is not applicable to operators which
have no natural definition on an open ball, which includes, as an important case, oper-
ators defined over the space of densities or some other cone in the infinite dimensional
Banach space, including operators like G above.

Extend the Right Derivative

For operators defined specifically over a cone, such as the space of square integrable
densities with L2 norm, there exists an alternate notion of derivative which can pre-
serve many of the properties of the Fréchet derivative, the ‘right derivative’ over a
cone K: see Deimling (2010, Ch. 6). Letting K be a cone in an a Banach space B,
and F : x+K\Br(0)! B an operator on that cone, F is right differentiable if there
exists an operator F 0

+ 2 L(K �K,B) such that lim

khk!0,h2K
kF (x+h)�F (x)�F 0

+(x)[h]k
khk = 0.

In other words, we require norm convergence of the perturbations, but only along
directions inside of a (positive) cone. This ensures that the derivative yields an ap-
proximation in norm and not just along a path, but allows differentiation of operators
like G, which may not be defined or bounded outside of such a cone.

If this limit exists, the operator can be extended from K to a larger space, and
for the case of interest to us where B = L2 and K = L2

+ := {x 2 L2
: x(t) � 0 a.e.}

or, similarly, L2
0 and L2

0+, the operator can be extended to L(L2, L2
) (respectively

L(L2
0, L

2
0)) and so provides a bounded linear operator on a Hilbert space which can

be used in place of the Fréchet derivatives in all derivations. More precisely

Lemma 5. Let F : x+L2
+ \Br(0)! L2 be right differentiable with right derivative

F 0
+ at x. Then there exists an extension F 0

+ 2 L(L2, L2
). Similarly, this result holds

with L2 replaced by L2
0

Proof. F 0
+[h] is well defined for any h 2 K. For h 2 K �K := {y � z : y, z 2 K},
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define F 0
+[h] = F 0

+[y]�F 0
+[z]. For h 2 K �K, define F 0

+[h] = lim

kh
k

�hk!0, h
k

2K�K
F 0
+[hk]

which is well defined due to the boundedness of F 0
+ on K �K.

Next, show L2
+�L2

+ = L2, following Definition 19.1 and results in Deimling (2010).
By example 19.2, L2

+ is fully regular, and by proposition 19.2 it is normal. The dual
cone K⇤ of L2

+ is also L2
+, and so by proposition 19.4 because K⇤ is normal, K is

reproducing, which means by definition L2
+ � L2

+ = L2.
The result for L2

0 proceeds analogously.

In this case, the Taylor expansion of the policy function can be understood to
be an approximation in norm for all perturbations lying within the positive cone.
Further, in some cases, the approximation may also apply in the case of a subset of
perturbations lying outside the positive cone. In particular, for operators defined over
square integrable density functions F : L2

0+ ! L2, it may be the case that at some

point x we have lim

khk!0,h2K��

kF (x+h)�F (x)�F 0
+(x)[h]k

khk = 0 for some � > 0. In these cases,

the derivative may be defined directly over the space K � �, which shifts the cone by
some small amount and so is strictly larger than the positive cone, and the Taylor
remainder also converges in norm over perturbations in this larger set. By the above
lemma, as the right derivative has canonical extension to the full space, this operator
may be used in place of a Fréchet derivative in all operations here.

This extension does suffer some limitations. In particular, an operator norm
convergent Taylor expansion of a nonlinear operator between spaces of densities will
not in general preserve the restriction of the output to the space of densities. This
may or may not be a problem, depending on the desired application.

To illustrate, consider the operator G[f ]. Its right derivative at ¯f 2 F✏, which
coincides with the Gateaux derivative and Hadamard derivative for directions within
the positive cone, is given by

Gf̄ [h(.)] := �
Z

g(y)
¯f(x)2

[h(x)]dx

By the above arguments, the Taylor expansion based on this derivative converges
in norm to the true operator for perturbations of the form ¯f + h with h 2 L2

0+, but
may also be shown to converge in norm for perturbations restricted to the space K��
for any � < ✏.

For the geography model described in the main text, which contains operators
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acting on spaces of non-negative functions, one should interpret the derivatives given
as extended right derivatives, and so the local representation should be interpreted
as over a resricted space of this form. None of this affects the computation or com-
parison to the exact projection representation of these derivatives, which describe
computation of the derivatives themselves, which are well-defined regardless of of the
precise relation to the full nonlinear model.

C.3 Special cases in which a known decomposition exists

To compute the functional derivatives of the equilibrium policy operators of a rational
expectations model with Hilbert valued states, it is generally necessary to separate
the state space into forward looking and backward-looking, or ‘unstable’ and ‘stable’
components. In some special cases, these components correspond to known or ana-
lytically identifiable state variables. This generally requires that certain derivatives
equal 0: a type of exclusion restriction which ensures that backward-looking variables
are not influenced by forward looking variables or vice versa. Exclusion restrictions
of these sort are prevalent in partial equilibrium models, in which a forward look-
ing decision may be made given a persistent and purely exogenous state variable.
For example, if the feedback between population and economic activity were to be
removed from the geography model described in Section 3, the migration decision
problem given an exogenous distribution of wages would fall into this class. Similar
exclusion restrictions may also arise in cases where the equilibrium environment and
decision problem are carefully tailored so that a persistent backward looking state
has no impact on forward looking decisions which do affect the state. A special case
of this structure is when decision making is purely myopic, either due to a carefully
tailored incentive structure or due to behavioral constraints on the decision makers.
Models with these kinds of exclusion restrictions may be described as triangular, and
are strongly related to the class of block-recursive solutions. While the restrictions
required to ensure that such a condition holds are often stringent, the computational
and analytical tractability that they allow makes them an important special case.

Let us consider two kinds of triangular models, roughly corresponding to the cases
described above where forward-looking decisions are not influenced by a persistent
state and where a persistent state is not influenced by a forward looking decision.
I will call such cases upper triangular and lower triangular, respectively, for reasons
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that will become apparent. In the upper triangular case, the partial derivative of
the equilibrium conditions with respect to the predetermined state variables x is 0 in
the equations describing the forward looking decision. This can occur in models with
myopic decision making, either due to behavioral constraints or due to a structure of
preferences, production or technology designed to produce the knife-edge condition
that the optimal decision is independent of the state of the world. In the notation
from above, in such cases, the derivatives may be decomposed as

(B,A) = [�Fx � Fy, Fx0 Fy0 ] =

"
T11 T12

0 T22

,
S11 S12

0 S22

#

without any (additional) unitary transformation, so Q = U = I, and the forward
and backward looking state variables may be identified with y and x, respectively.
Applying results from Section 4 on the derivatives of the policy functions, obtain
gx = 0 and hx = S�1

11 T11. This says that, consistent with the intuition, the forward
looking state has 0 derivative with respect to the persistent backward-looking one,
and the backward looking state evolves autonomously. This is a locally stable solution
if the spectrum of S�1

11 T11 lies within the unit circle.
The lower triangular case occurs when the derivative of the equilibrium conditions

with respect to the jump state variable y is 0 in the equations describing the backward
looking persistent state variable. This can occur in partial equilibrium or small open
economy type settings, in which aggregate states or distributions are determined
completely exogenously. In this case, the derivatives are decomposed as

(B,A) = [�Fx � Fy, Fx0 Fy0 ] =

"
T11 0

T21 T22

,
S11 0

S21 S22

#

without any unitary transform, so again y and x may be identified with forward and
backward-looking state variables. In this case, a slightly different calculation may be
applied to obtain the derivatives of the policy operators. Applying the condition

"
S11 0

S21 S22

#"
hx

gxhx

#
=

"
T11 0

T21 T22

#"
I

gx

#

obtain the solution hx = S�1
11 T11, which is to say that x evolves according to a law of

motion which does not depend on the forward looking jump state y. The derivative
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gx of the policy function giving y in terms of x, satisfies the equation

T22gx = S21hx � T21 + S22gxhx

which may either be expressed recursively as an infinite sum, or by treating gx as an el-
ement of the Banach space of bounded linear operators, in terms the inverse of the lin-
ear operator T22[.]�S22[.]S

�1
11 T11, if it exists, as gx = (T22[.]�S22[.]S

�1
11 T11)

�1
(S21S

�1
11 T11�

T21). 14 While neither of these formulas is particularly straightforward to apply, often
inverses may be computable in closed form, allowing simple evaluation of the effect
of a state variable of interest on an intertemporal decision problem without requiring
the computation of approximate operator decompositions.

C.4 Verifying uniqueness of h
x

The following lemma provides an alternative equivalent representation for hx. Among
other uses, this representation implies that the conditions for uniqueness of a solution
gx imply uniqueness of the solution hx.

Lemma 6. Let (U22U⇤
22)

�1 be bounded and let gx solve U21 + U22gx = 0. Then

hx = (U11 + U12gx)
�1S�1

11 T11(U11 + U12gx)

= ('X⇤'X
+ g⇤xgx)

�1
(g⇤xU

⇤
12 + U⇤

11)S
�1
11 T11(U11 + U12gx) (C.1)

As a corollary, note that 'X⇤'X
+g⇤xgx is a quadratic form satisfying inf

kxkH
x

=1
k('X⇤'X

+

g⇤xgx)xk � inf

kxkH
x

=1
k'X⇤'Xxk = 1 and so this inverse always exists and is bounded.

Therefore, if (U22U⇤
22)

�1 is bounded, a stable solution exists for hx, and if U�1
22 is

bounded, this solution is unique.

Proof. See Appendix F.
14If we may use the familiar notation vec(g

x

) to denote the map from the space of operators to
an isomorphic Banach space, viewed as a vector space, we may write this formula suggestively as
vec(g

x

) = (I⌦T22�(S�1
11 T11)

⇤⌦S22)
�1vec(S21S

�1
11 T11�T21), which gives the solution in terms of the

finite dimensional vec operator and the Kronecker product when H
x

and H
y

are finite dimensional.
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C.5 Ensuring Asymptotic Diagonality

Requiring all components of the derivatives to either be compact or to be composed
of identity operators restricts the functional forms of allowable models, potentially
in ways which rule out economically meaningful effects. For example, in a model
with a distribution of characteristics which evolve independently across individuals
driven by a Markov process, the distribution is a state variable and its evolution
is described by an adjoint Markov operator. When the conditional density of the
process given any initial state is sufficiently smooth, the operator mapping the density
today to the density tomorrow will be compact and the density tomorrow enters
via an identity. However, when there is a point mass in the conditional density,
the transition operator need not be compact. Point masses can describe inertia,
such as that induced by fixed costs (Stokey, 2008) or indexation, or mass movement
along a discontinuous path. Similarly, decision problems where the object chosen is
a function, ubiquitous in economics in the form of best-response policies, can yield
first order conditions in which the function which is a choice variable enters into a
nonlinear utility function, resulting in a functional derivative which is a multiplication
operator, which may be noncompact. In some cases, it may be possible to transform
the condition into one where the noncompact operator is an identity by applying its
inverse to the equation, but this can eliminate only one non-identity operator from
the equation. In the case where this decision problem over functions faces a state
variable which is also a function, as in games or contracting problems, or government
choosing nonlinear policies over a continuum of agents, goods, or locations, there may
be multiple nonlinear operators in the decision problem which may prevent reducing
to an asymptotically diagonal form.

When possible, applying an invertible transformation to both sides of an equi-
librium equation can ensure that the asymptotically diagonal form holds without
making changes to the model itself. In other cases, it may be possible to construct
a modified model which is close to the original but which satisfies the condition that
its derivatives are asymptotically diagonal. For example, if compactness fails due to
a law of motion with discrete jumps to a fixed value, creating a discontinuity in the
distribution at that value, the discontinuity may be removed if the discrete jump is
accompanied by a small amount of continuously distributed noise, thereby smooth-
ing out the conditional distribution, though the shape of the resulting distribution
may be very close if the noise is small enough. Similarly, discrete actions induced

66



by hard constraints can be made to vary continuously by replacing hard constraints
with smooth but sharply growing penalties which induce similar but smooth behavior.
These sorts of smoothing transformations are commonly used to employ numerical
methods which rely on smoothness (see Den Haan (2010) for commentary), though
it should be noted that these changes in the model may not be innocuous. While
the resulting behavior at the individual level may be extremely similar, the resulting
operator describing the law of motion for the distribution across individuals, which
is now compact, as desired, must be far away from the true operator for some input
functions. As a result, this approach does not guarantee that the resulting aggre-
gate behavior will be close. Instead, it provides a solution to a different model, with
similar individual level behavior. However, if the additional noise or smoothing of
the constraint is empirically justified, this is not necessarily a concern. For example,
the extreme value heterogeneity in location preference in the model of migration de-
cisions not only ensures a smooth law of motion for the population distribution, it
also reflects the believable feature that there is idiosyncratic preference heterogeneity
which ensures that individuals do not all move to the same place.

D Additional Results on Geography Model

D.1 Static Equilibrium and its Derivatives

Here, the static spatial equilibrium of the economic geography model of Krugman
(1996) is described. Equations (A.24)-(A.27) of that model are sufficient to solve
for the spatial distributions of output, prices, and wages given a pre-determined
population distribution �t(x).

The static variables included in these equations are Y (x), output at location x,
T (x), the price index at location x, and w(x), the nominal wage in terms of the
nontraded good. Parameters used are �, the elasticity of substitution of the CES
aggregator across varieties, µ, the Cobb-Douglas expenditure share on traded goods,
and ⌧ , the scale factor in the proportional iceberg trade costs 1�e�⌧ |x�y| of shipping a
good from point x to point y. Given a predetermined distribution of population �t(x),
a static equilibrium of the model is given by functions {Yt(x), Tt(x), wt(x),!t(x)}
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satisfying the system of nonlinear integral equations

Yt(x) = 1� µ+ µ�t(x)wt(x) (D.1)

Tt(x) =


⌧(� � 1)

2

Z

G

�t(z)wt(z)
1��e⌧(1��)|x�z|dz

� 1
1��

(D.2)

wt(x) =


⌧(� � 1)

2

Z

G

Yt(z)Tt(z)
��1e�⌧(��1)|x�z|dz

� 1
�

(D.3)

!t(x) = wt(x)Tt(x)
�µ (D.4)

This system of equations is not analytically tractable and has no explicit solution
for !t in terms of �t, but such a solution, expressed as !(�t), may be calculated
implicitly.

For the purposes of the linearization, it is sufficient to calculate the derivative
d!
d�

of !(�t), the equilibrium operator mapping population to real wages implicitly.
Taking functional derivatives of equations (D.1),(D.2), (D.3), and (D.4) evaluated at
the uniform steady state, obtain

dY

d�
= µ[.]

dY

dw
= µ[.]

dT

d�
=


⌧(� � 1)

2

� 1
1��

1

1� �
Z

G

e⌧(1��)|x�z|dz
� �

1��

Z

G

[.]e⌧(1��)|x�z|dz

dT

dw
=


⌧(� � 1)

2

� 1
1��

1

1� �
Z

G

e⌧(1��)|x�z|dz
� �

1��

(1� �)
Z

G

[.]e⌧(1��)|x�z|dz

dw

dY
=


⌧(� � 1)

2

� 1
�

1

�

Z

G

e�⌧(��1)|x�z|dz
� 1��

�

Z

G

[.]e�⌧(��1)|x�z|dz

dw

dT
=


⌧(� � 1)

2

� 1
�

1

�

Z

G

e�⌧(��1)|x�z|dz
� 1��

�

(� � 1)

Z

G

[.]e�⌧(��1)|x�z|dz

d!

dw
= [.]

d!

dT
= �µ[.]

By the chain rule, we can express the derivative of the real wage with respect to
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the population distribution as

d!

d�
=

dw

d�
� µ(

dT

dw

dw

d�
+

dT

d�
) (D.5)

where by the implicit function theorem in Banach space and the chain rule repeatedly
applied,

dw

d�
= (I � dw

dY

dY

dw
� dw

dT

dT

dw
)

�1
(

dw

dY

dY

d�
+

dw

dT

dT

d�
).

This operator exists so long as the inverse is well-defined: this can be verified
numerically using the characterization in Appendix F.3.

D.2 Derivation of functional autoregressive shock process

To see how shocks taking the form of a functional autoregressive process, or more
generally a functional linear process as in Bosq (2000), may naturally enter the de-
scription of an economic model based on standard descriptions of individual level
behavior, including but not limited to the diffusion equation (3.3) for amenities,
consider the following illustration based on linearizing the aggregate dynamics of a
standard linear dynamic panel model of the kind commonly used in microeconometric
study of the dynamics of income and consumption by consumers or production by
firms to model individual behavior.

A simplified version of this model is given by the assumption that, for each agent
(or location or other unit) i, the variable of interest ⇣it follows the autoregressive
process ⇣it+1 = ⇢⇣it + ✏it+1, where ✏it+1 is independent of ⇣it and across agents and
|⇢| < 1. While it is conventional to take an interest in the individual persistence
parameter ⇢, for the purposes of analysis of aggregates and welfare we may also
be interested in the cross sectional distribution of the attribute ⇣it, which may be
represented by pdf ft(⇣). Given a measure 1 continuum of agents following this
rule, the evolution of this distribution can be determined from its past value and
the distribution of the shock ✏it+1. To model time varying effects such as aggregate
shocks, we may let ✏it+1

i.i.d.⇠ pt+1(✏) across agents, where the density function pt+1(.)

may be taken as a function valued random variable for each t. This models not
only mean shifts, as would be captured by time fixed or random effects, but also
distributional changes such as the changes in polarization or tail behavior of income
risk as documented, for example, in Guvenen et al. (2014). Under this assumption,
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we have a dynamic equation for the evolution of the distribution of ⇣, given by the
convolution of the past distribution and the shock distribution

ft+1(⇣) =

Z
pt+1(⇣ � ⇢u)ft(u)du (D.6)

which provides a recursive representation for a function valued economic variable of
interest, ft(.), in terms of current and past values of the state, an operator mapping
between them, and an exogenous shock which is also function valued, pt+1(.).

The law of motion for the distribution provided by the panel model in (D.6) can
be approximated by linearization in the case of ‘small’ changes in the distribution.
To consider the model in the case of small i.i.d. over time aggregate shocks to the
cross sectional distribution pt+1(✏) of idiosyncratic shocks, write the law deviations
from the mean as pt+1(✏) � p⇤(✏) = �zt+1(✏), for zt+1(✏) an i.i.d. over time Bochner
mean 0 random function so that at � = 0 the distribution of ✏ is constant over time at
a fixed distribution p⇤(✏). In the notation of Section 2 for the equilibrium conditions
of a dynamic model, x0

2 = pt+1(✏) � p⇤(✏), z0 = zt+1(✏) and h2(x2) = 0 because we
have assumed that the exogenous aggregate shocks are not persistent.15 To complete
the description of the model, we may take as the endogenous predetermined variables
x1 = ft, x0

1 = ft+1, and

F (x1, x2, x
0
1, x

0
2) =

"
ft+1(⇣)�

R
pt+1(⇣ � ⇢u)ft(u)du

pt+1(✏)� p⇤(✏)

#

as the equilibrium operator defining the model. In this case, all variables are pre-
determined or exogenous, so there is no y variable. A linear approximation with
respect to f and p is given by taking the functional derivative of F with respect to
pt,ft, pt+1, ft+1 around a nonstochastic steady state f ⇤, p⇤ satisfying p(✏) = p⇤(✏),
f ⇤
(⇣) =

R
p⇤(⇣ � ⇢u)f ⇤

(u)du, which exists whenever |⇢| < 1 under mild conditions
on the density p⇤ of the error term: see Christensen (2014). Applying the chain rule
and the product rule, a Taylor expansion of the law of motion for ft+1 in pt+1 and ft

15Allowing h2(x2) in the model to be nonzero would represent persistence in the aggregate shock
to the distribution of error terms. After linearization, the cross sectional distribution of ⇣, the ob-
servable individual characteristic, would then be approximated by a functional ARMA(1,1) process,
instead of a functional AR(1).
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is given by

ft+1(⇣) =

Z
p⇤(⇣ � ⇢u)f ⇤

(u)du+

Z
p⇤(⇣ � ⇢u)[ft(u)� f ⇤

(u)]du

+

Z
[pt+1(⇣ � ⇢u)� p⇤(⇣ � ⇢u)]f ⇤

(u)du+ o(k(ft � f ⇤, pt+1 � p⇤)k).

Substituting in the (already linear) law of motion pt+1 = p⇤ + �zt+1 and the steady
state relation, obtain

ft+1(⇣)�f ⇤
(⇣) =

Z
p⇤(⇣�⇢u)[ft(u)�f ⇤

(u)]du+�

Z
zt+1(⇣�⇢u)f ⇤

(u)du+o(k(ft�f ⇤, pt+1�p⇤)k)

which expresses the deviation from the steady state in time t+1 as given by a linear
operator applied to the deviation from steady state in time t plus, by linearity of
the expectation and of the integral operator applied to zt+1(.), a mean 0 exogenous
Banach random element. That is, it may be written as

f 0 � f ⇤ ⇡ B[f � f ⇤
] + �"0

for some linear operator B and some mean zero noise "0, a linear functional autore-
gression as in Bosq (2000), so long as both the noise and the deviation from a steady
state are small. As similar procedures may be applied to more general dynamic panel
data models, one sees that a functional linear process may provide a local approxi-
mation to the law of motion for distributions of cross-sectional aggregates for a wide
range of commonly used empirical models of individual and aggregate behavior.16

D.3 Steady State and Exact Projections

To go from the functional derivatives of the equilibrium conditions to a linear solution,
it suffices to find projections onto a complete set of basis functions. The structure
of the geography model presented here makes that task particularly simple, because
when the basis used is the standard Fourier basis of trigonometric polynomials, the
projections can be calculated exactly without numerical integration. The structure
can also be used to verify the conditions which ensure that projection approximations

16For models as simple as in D.6, it is possible to characterize the behavior without approximations:
the random linear operator model generalizes the random coefficients model to infinite dimensions,
and has been analyzed in Skorohod (1984).
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are valid. In fact, the structure allows even more to be said about the solution than
can be inferred from Theorem (1). Because the model is block diagonal with respect
to the Fourier basis, the solution operator can be calculated exactly for any input
given by a Fourier basis function, and so for any bandlimited function.

Recalling from Section 6, the linearized equilibrium conditions in this model are
given by

(B,A) =

0

B@�

2

64
0 0 I

P 0 �P � �PP

0 � 0

3

75 ,

2

64

d!
d�

I �P

I 0 0

0 I 0

3

75

1

CA

in which P [.] = 1
f̄

R
exp(c(x0�x)+� ¯V )[.]dx0, � is likewise an integral operator, and d!

d�

can be shown to be defined in terms of the composition of a number of convolution
operators with respect to a Laplace distribution and their inverses. The model is
therefore composed of identity and integral operators, exactly the structure needed
for the projection approaches developed here to be valid. Moreover, examining the
expressions for the derivatives of the economic geography model it can be seen that
all of the integral operators are expressed in terms of convolution operators. By
the convolution theorem, all convolution operators (and their inverses, as well as
the identity) are diagonal in a Fourier basis, and so all operators can be expressed
as a convolution with distributions, or equivalently, as multiplication of the Fourier
transform of the input by a known function.

Because each functional derivative in the model is diagonal with respect to the
Fourier transform, the model can be broken down into blocks corresponding to in-
dividual frequencies: there is no interaction across frequencies. Within a frequency,
the linearized model can be written in terms of 3⇥ 3 matrices of derivatives of each
component with respect to perturbations at that frequency. The exception is at fre-
quency 0, where only derivatives with respect to V and ⌫ are taken, as, by Parseval’s
theorem, functions in L2

0(R) can be represented in the Fourier domain as sequences
of Fourier coefficients with the coefficient at frequency 0 equal to 0.

Among other things, this block diagonal structure implies that Condition 1.(ii)
regarding the modulus of continuity of the Schur decomposition holds so long as Con-
dition 1.(i) holds. Conditions 1.(i) and 1.(iii), requiring existence and uniqueness of a
Schur decomposition into components inside and outside the unit circle with unstable
subspace isomorphic to the space spanned by the jump variable (in this case V ), may
also be verified for any given set of parameters by ensuring the conditions hold for
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each finite dimensional subsystem. In order for the system to have a locally stable
rational expectations equilibrium, it must be the case that at each frequency, the
system has two generalized eigenvalues inside the unit circle, corresponding to the
predetermined variables ⌫ and �, and one generalized eigenvalue outside, correspond-
ing to the jump variable V . Such a condition is not general: it requires restrictions on
the parameter values to ensure that such a solution exists. However, these conditions
can be guaranteed by a finite set of computations

Impressionistically, because the value of a location is a weighted average of future
wages (a function of population), and because the current population is a weighted
average of past values, the system remains stable only if this mutual reinforcement is
not too strong. Otherwise, at certain frequencies, at which more than one eigenvalue is
unstable, the linearized model implies that value grows without bound and population
does as well: this is the conclusion of Krugman (1996), which does not derive dynamics
from forward-looking decisions. However, the stability condition on the eigenvalues
is substantially weaker than the condition imposed by Krugman, that the impact of
population on wages be negative for all frequencies. Positive feedback is consistent
with stability of a rational expectations equilibrium so long as the effect on wages is
expected to be temporary. Moreover, if the feedback is temporary, the population
response is damped, and so the degree of mutual reinforcement is even lower. As a
result, only frequencies where the parameterization implies that the feedback from
population to wages is so large that no policy rule which eventually returns to steady
state can be constructed are a problem for calculating a forward looking solution.

To consider which frequencies might be problematic, note that at extremely high
frequencies, because convolution with a smooth density dampens high frequency fluc-
tuations, the mutual reinforcement phenomenon is dampened and eventually disap-
pears, so these frequencies are stable. Similarly, due to the dispersive forces in the
geographic equilibrium model, at extremely low frequencies, increasing population
actually reduces wages, ensuring stability. It is at intermediate frequencies where
population growth and real wage growth are complementary, and parameters must
be chosen so that at these frequencies the degree of complementarity is not so great
as to prevent the mean-reversion induced by the dispersion of population due to
idiosyncratic tastes from ensuring eventual return to uniformity after a temporary
shock. This suggests that a parameterization of adjustment costs which ensures that
medium to high frequency fluctuations are rapidly smoothed out is needed. However,
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degree of smoothing and size of adjustment costs have a nontrivial relationship. For
quadratic costs, a higher scale is equivalent to a smaller variance of the Gaussian flows
and so results in less smoothing. However, while changing from quadratic to linear (in
absolute distance) costs results in Laplace flows with substantially more movement
to long distances as it lowers costs of moving large distances, it raises costs of moving
short distances and so decreases mean reversion at medium to high frequencies. In
practice, stability holds for a very broad range of parameter values.

Formally, at each frequency not equal to 0, the model is represented by a 3 ⇥ 3

block of the Bellman equation, the population transition, and the shock transition at
that frequency. At a representative frequency �, the model can be taken as a set of
matrix equations in Fourier transform of the vector of endogenous functions at that
frequency. The matrix of derivatives with respect to (

ˆ��, ⌫̂�, ˆV�) is

B� =

2

64
0 0 1

ˆP� 0 � ˆP� � � ˆP 2
�

0

ˆ

�� 0

3

75

where ˆP� is the Fourier transform of 1
f̄
exp(c(x)+� ¯V ) evaluated at frequency � and ˆ

��

is the Fourier transform of �(x) evaluated at frequency �. The matrix of derivatives
with respect to (

ˆ�0�, ⌫̂
0
�, ˆV

0
�) is

A� =

2

664

ˆd!
d� �

1 � ˆP�

1 0 0

0 1 0

3

775

where ˆd!
d� �

the Fourier transform of d!
d�

at frequency �, is derived in Appendix E.
Finally, at frequency 0, by dropping the transition equation which does not act

over this frequency because perturbations of � are restricted to lie in L2
0, the space of

functions integrating to 0, to ensure that the density � integrates to 1, the system is
represented by 2⇥ 2 blocks of derivatives with respect to (⌫̂�, ˆV�) and (⌫̂ 0�, ˆV

0
�) given

by

(B0, A0) =

 "
0 1

ˆ

�0 0

#
,

"
1 � ˆP0

1 0

#!

To construct an approximate solution from these projections, note that because
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the operator pairs are block diagonal, a fully upper triangular infinite dimensional
system can be constructed so long as each block can be placed in upper triangu-
lar form. Together, each pair of matrices forms a finite dimensional linear rational
expectations system which can be evaluated by standard algorithms for calculating
perturbative expansions of such systems, such as the Schmitt-Grohe & Uribe (2004)
procedure, based on the algorithm of Klein (2000). Here, no changes need to be
made to the finite dimensional procedure: it is simply applied independently at each
integer frequency �. The derivatives of the policy functions are then given by the
collection of derivatives at each frequency. For each � 6= 0, the policy functions
ˆh� : (

ˆ��, ⌫̂�) ! (

ˆ�0�, ⌫̂
0
�) and ĝ� : (

ˆ��, ⌫̂�) ! ˆV� are given by 2 ⇥ 2 and 1 ⇥ 2 matri-
ces. The first order approximate policy operators are then represented with respect
to the Fourier basis as block-diagonal infinite matrices ˆh and ĝ, with ˆh� and ĝ� on
the diagonals, respectively, so that for general inputs in L2

0(R)⇥L2
(R), they may be

represented as h = F�1
ˆhF and g = F�1ĝF where F is the Fourier transform and

F�1 is the inverse Fourier transform.
For bandlimited perturbations, a finite representation hK

x , gKx given by concate-
nating the first K frequencies is exact. More generally, the functional derivatives gen-
erated by taking an increasing finite collection of frequencies converge in the strong
operator topology, and for any components which are compact, in the operator norm
topology. Operator norm convergence follows from application of Theorem (1). To
see that the conditions are met, note that for smooth adjustment costs and transition
functions, ˆP�, ˆ

��, and ˆd!
d� �

converge to 0, and so compactness and convergence of
the projected derivatives in operator norm follows. Moreover, as � ! 1, (B�, A�)

converges to

(Bi
I , A

i
I) =

0

B@

2

64
0 0 1

0 0 0

0 0 0

3

75 ,

2

64
0 1 0

1 0 0

0 1 0

3
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1

CA ,

and by the continuity of the generalized Schur decomposition with respect to per-
turbations, the policy functions at each frequency also converge. It can be shown
that the first derivatives of the policy functions gix = ĝ1 : (

ˆ�1, ⌫̂1) ! ˆV1 and
hi
x =

ˆh1 : (

ˆ�1, ⌫̂1) ! (

ˆ�01, ⌫̂ 01) generated by calculating the finite dimensional
linear rational expectations solution for this pair are given by matrices which are
identically 0, and so hK = hK

x and gK = gKx . As a result, by taking an increasing set
of frequencies, the finite representation can be used to compute a response which is
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accurate uniformly over all input functions, and not just bandlimited ones.
It is possible to determine the rate of convergence directly from the exact rep-

resentations rather than by applying the rate results from Theorem (1). Note that
perturbation results for generalized eigenvectors and eigenvalues imply a linear rate
of convergence in the Frobenius norm of the perturbation (see Stewart & Sun (1990)),
while sufficiently smooth functional forms for adjustment costs and for the transition
operator for the exogenous shocks, and the exponential form chosen for trade costs,
generate rates of convergence for the entries which are faster than linear in �. As a
result, given sufficiently smooth parameterizations, the blocks of the policy function
corresponding to each frequency converge at a rate comparable to the slowest rate of
each of the components. So long as this converges to 0, this implies that the policy op-
erators are compact (and if this rate is faster than linear, they are Hilbert-Schmidt),
and so the policy operators given by taking an increasing finite sequence of blocks
converge to the true policy functions in operator norm. One note regarding the form
of this convergence is that the perturbation theorem for the Schur subspaces applies
only under a separation condition on the generalized eigenvalues, while (Bi

I , A
i
I) has

the generalized eigenvalues (0,1,1). This implies that the blocks corresponding
to forward and backward looking components are well separated, while within the
block of backward looking components the eigenvalues are not asymptotically well
separated and the generalized Schur vectors are not stable. However, the block itself
is stable in the sense that the span of the Schur vectors converges, and so the policy
functions, which are determined only by the sub-blocks of the Schur matrices, also
converge.

Formally, this may be stated as

Lemma 7. (i) gix = ĝ1 = (0, 0), hi
x =

ˆh1 =

 
0 0

0 0

!
Suppose

�� :=

��
(B�, A�)� (Bi

I , A
i
I)

��
F
! 0

as |�|!1. Then kĝ� � ĝ1kF = O(�
1
2
� ) and

���ˆh� � ˆh1
���
F
= O(�

1
2
� ) for large |�|, and

so converge to 0 and

h[�(x), ⌫(x)] = ˆh0[

Z
⌫(x)dx] +

X

�2Z\{0}
(

ˆh�

"R
exp(�2⇡i�x)�(x)dx

R
exp(�2⇡i�x)⌫(x)dx

#
) �
"
exp(�2⇡i�x)
exp(�2⇡i�x)

#
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and

g[�(x), ⌫(x)] = ĝ0[

Z
⌫(x)dx] +

X

�2Z\{0}
(ĝ�

"R
exp(�2⇡i�x)�(x)dx

R
exp(�2⇡i�x)⌫(x)dx

#
) · exp(�2⇡i�x)

are compact. (ii) Suppose in addition that �� = O(|�|�(1+✏)
) for some ✏ > 0. Then

h[�(x), ⌫(x)] and g[�(x), ⌫(x)] are Hilbert-Schmidt.

Proof. See Appendix F.

This result not only gives compactness and rates of convergence, it also implies
that the approximated policy operators converge in a stronger norm, the Hilbert
Schmidt norm. The demonstration that these operators are compact and Hilbert-
Schmidt implies that in principle, the policy function in this model could be consis-
tently estimated from a time series of observations of (�, ⌫) by procedures such as
those described in Bosq (2000); Guillas (2001).

D.3.1 Stability Conditions

While in principle a closed form is available for the policy functions at each frequency
for arbitrary parameter values, it is an unintuitive nonlinear function of the roots
of a cubic polynomial, so instead I verify the stability conditions at each frequency
numerically at each value of the parameters examined. By the stability of the system
at (Bi

I , A
i
I) and the convergence of (B�, A�) to (Bi

I , A
i
I), it is sufficient to verify the

eigenvalue condition for the finite set of frequencies where the derivatives differ by
more than some small constant from (Bi

I , A
i
I).

In practice, and in contrast to the generically explosive limit generated by the ad-
hoc dynamics imposed in Krugman (1996), only for relatively extreme parameteriza-
tions does the model with forward-looking decision making lack an equilibrium which
is locally stable. The complementarity between wages and population at intermediate
frequencies generated by agglomerative forces in the model and the substitutability at
low frequencies generated by the dispersive forces are reflected in the cross-derivatives
of the transition operator ˆh mapping shocks to living standards and population this
period to those next period. The complementarity and substitutability manifest as a
positive coefficient in the map from the shock ⌫̂� to amenity value today to population
tomorrow at intermediate frequencies and a negative coefficient at low frequencies,
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respectively. However, the presence of a positive coefficient does not generate explo-
sive behavior if the shock itself is mean-reverting, as assumed, and the autonomous
dynamics of population are also stable. Here, except when the elasticity of substitu-
tion across varieties � is extremely low so the benefits of agglomeration in a region
with large population and a large variety of goods is high, the natural smoothing of
population across regions generated by heterogeneous idiosyncratic preferences is the
dominant determinant of the speed of adjustment of population at a given frequency.
As a result, even for very strong agglomerative forces, it is also necessary for adjust-
ment costs of moving to be quite large before complementarities at some frequency
dominate and generate dynamics which are locally unstable.

In part, this expresses an important difference between the myopic and forward-
looking models. In the myopic case, even small complementarities result in a cumu-
lative process which continues without bound, while in a forward looking setup, if
the effects of such complementarities are transient, their impact on value and so on
decisions is bounded and so is attenuated. From an economic perspective, forward-
looking decisions respond less strongly to changes perceived as temporary, and so
even in the presence of complementarities, regional shocks need not be destabiliz-
ing. To be fair, however, some of the difference also reflects the additional dispersive
force provided by idiosyncratic preference shocks, though it’s not clear how one would
generate a smooth transition law as in Krugman (1996) even with myopic decision
making without some other smoothing force.

D.4 Calibration

To characterize the dynamics of population and values in the model, I calculate
the first derivatives of the policy operators for a fixed set of parameters. For the
adjustment cost function c(x), in order to generate a Gaussian conditional distribution
of population movements in steady state, I adopt a quadratic specification c(x) =

1
2�

c

x2, where �c parameterizes the cost of moving and is also the standard deviation of
the conditional Gaussian distribution. For the kernel describing the persistence of the
exogenous shocks �(x), in order to ensure both stationarity and decay of coefficients
to represent smooth diffusion of shocks from their initial locations, I choose a rescaled
Gaussian pdf, �(x) = k�p

2⇡��
exp(� 1

2�2
�
x2
), where |k�| < 1 ensures stationarity at all

frequencies and �� measures the speed at which shocks spread, or, more directly, how
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rapidly the autoregressive coefficient on each frequency goes to 0 as the frequency
increases.

For the static equilibrium of the model, I borrow parameterizations from Krug-
man (1996), who considers the ranges � 2 {4, 5, 6}, µ 2 {0.2, 0.3, 0.4}. As within this
range the qualitative behavior of the model is similar, all experiments reported are
carried out with � = 4, µ = 0.4. While the trade cost parameter ⌧ is left unspecified
in the parameterization as it merely normalizes the unit of distance in the model, the
relative values of ⌧ , ��, and �c determine the characteristic length scales at which
trade, productivity (or other shock) diffusion, and migration operate. Because trade
costs are specified as exponential, while migration and productivity diffusion follow a
Gaussian and so squared exponential rate of increase in distance, the numbers are not
directly comparable. This specification implies that trade at long distances is rela-
tively less costly than migration or diffusion of changes in the economic environment.
While difficult to place on a comparable scale, this seems to be qualitatively reason-
able for a global or national scale, with long-distance exchange relatively common
while long distance migration is comparatively rare. For the purposes of simulations,
and without any claim to represent empirically reasonable values, simulations set
⌧ = 0.2, �� = 0.04, and �c = 0.05, representing again fairly small trade costs and
fairly slow diffusion of population and amenity value from an initial location. Along
with a value of k� = 0.98 and discount rate � = 0.96, these are designed to ensure
that fluctuations in the spatial distribution of population and amenity values are
persistent and that the model generates substantial variation in the expectations of
future distributions.

D.4.1 Finite Domain

While solving the model on an infinite domain ensures a great deal of tractability, it
has some disadvantages, of which lack of realism is a minor but nontrivial one. From
a more practical perspective, when approximating the integrals via an expansion in
basis functions other than trigonometric polynomials, as may be needed for nonperi-
odic variations of the model, it permits use of compactly-supported basis functions,
such as B-splines or (certain classes of) wavelets, without requiring an unbounded
number to cover the entire domain. In order to ensure applicability of the wavelet
representation, I therefore construct a version of the model in which domain G is
finite. In the symmetric case, this change is minor: by setting G to be a circle of
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circumference 1 with coordinates x 2 [0, 1) parameterizing the location17 and chang-
ing the normalizing constant ⌧(��1)

2 to ⌧(��1)
2�2e�⌧(��1)/2 in formulas (D.2) and (D.3), it

can be easily seen that the steady state equilibrium remains uniformly distributed
with ¯�(x) = !̄(x) = ¯W (x) = ¯T (x) = 1 8x 2 G, and ¯V (x) constant. The only ma-
terial difference to the dynamics is that now instead of convolution with a Laplace
or Gaussian distribution as the representation of the effect of population on wages or
the dynamics of ⌫(x) or �(x) respectively, these operators are replaced by convolution
with truncated (and recentered and renormalized) Laplace or Gaussian distributions,
e.g. �(x) = 1

1�2�( 12 )
k�p
2⇡��

exp(� 1
2�2

�
(x� 1

2)
2
)1[0  x < 1] . This reflects the economic

structure of the problem: in a finite space, there is a finite maximum trade cost and
finite maximum migration cost, and so a minimum impact of one location on another.

Truncation does not change the ability to represent the operators as diagonal with
respect to a Fourier basis, though now the result holds by the circular convolution
theorem. The Fourier transform of a product is given by the convolution of the Fourier
transforms, and so, by a change of variables, in the derivation of d!

d�
, H(�) is replaced

by H(�) ⇤ Sinc(�), where Sinc(�)= sin⇡�
⇡�

is the Fourier transform of 1[�1
2  x < 1

2 ].
While this convolution has no simple closed form expression, it is easily calculated
numerically by quadrature.

For parameterizations with rapid increase in trade or migration costs over dis-
tance, this transformation has minimal effect, as the truncation only affects the far
tails. For small trade or migration costs, it increases impact at some frequencies and
decreases it at others, reflecting the periodicity induced by the circular shape. Nu-
merical experiments suggest that even for relatively small costs, the impact of this
change is limited. As a result, the main impact is on ensuring proper scaling and
allowing testing approximate equilibrium computation using a wavelet basis.

To represent the circular convolutions with respect to a wavelet basis, the op-
erators are first written in terms of the distance on a circle with x0 � x replaced
with arc length along the diameter of the circle: d(x0, x) = mod(x0 � x +

1
2 , 1) � 1

2

is the distance between points x0, x2 [0, 1) on the circumference. For example
�[⌫](x0

) =

R 1

0 �(d(x0, x))[⌫(x)]dx describes the value of the amenity value ⌫ 0(x0
) next

period at each point x0 2 [0, 1) given an initial distribution ⌫(x). Construction of
wavelet approximations consists of sampling the kernels (e.g. �(d(x0, x))) at an evenly
spaced grid of K⇥K points on [0, 1)⇥ [0, 1) and applying the discrete wavelet trans-

17By symmetry, the initial point 0 can be assigned to any arbitrary location.
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form to the rows and columns of the resulting matrix. The kernels used in this model
are infinitely differentiable at most values of x, y but nondifferentiable at d(x, y) = 0.5

due to the finite domain creating a maximal possible level of trade or migration costs
at the antipodal location on the circle where counterclockwise or clockwise movements
meet. For the exponential trade costs, there is also a point of nondifferentiability at
d(x, y) = 0. For wavelet representations, there is a tradeoff between vanishing mo-
ments to represent the smooth parts parsimoniously and width of the scaling function
which creates distortions at nonsmooth points. Although higher order Coiflets will
achieve faster rates asymptotically, for finite values of K, lower order Coiflets may
yield better performance, which is borne out in numerical experiments. As a com-
promise, level 3 Coiflets are used in all simulations and evaluations.

Two additional sets of approximations are made beyond those described in The-
orem (2). To ensure that perturbations to the population distribution �(x) remain
in the space of mean 0 functions, the wavelet representations of operators acting on
this space are orthogonalized with respect to the the wavelet representation of the
constant function. While for Haar wavelets this demeaning is exact, for other bases it
yields a representation which is approximately orthogonal to constants. Rather than
defining the exact kernel for d!

d�
and applying the wavelet transform to it directly,

because it is composed of convolutions with a Laplace distribution and identity op-
erators, it may be constructed by applying the products and inverses of the wavelet
representations of these operators. These operations preserve the convergence rates
derived for individual kernel operators, as is demonstrated in the next section.

D.5 Convergence results for compositions of approximated in-

tegral operators

The results in section 5.2 demonstrate convergence for operators of the form

K[f(y)] =

Z

[0,1)dj
K(x, y)[f(y)]dy.

In practice, some derivatives may be defined by compositions, sums, and other trans-
formations of operators in the form given. Fortunately, these compositions of wavelet
approximations of integral operators remain consistent, with convergence rate given
by the slowest of the convergence rates of the constituent components. In particular
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Lemma 8. Let {Ks}Ss=1 be compact operators between separable Hilbert spaces Hs1 !
Hs2 equipped with sequences of orthogonal projections ⇡K

s1 , ⇡K
s2 onto Ks1 and Ks2 di-

mensional subspaces, respectively, such that ˆKs := ⇡K
s1Ks⇡K

s2 satisfies
��� ˆKs �Ks

��� 
⌘K

s1 ,Ks2
! 0 and ˜Ks is a Ks1⇥Ks2 approximation satisfying

��� ˜Ks � ˆKs

���  ⇣K
s1 ,Ks2

!
0 Then, under the condition that the dimensions of the approximations are con-
formable, linear combinations and compositions converge at the same rate as the con-
stituent operators: i.e. there exist constants such that

���a ˜Ks + b ˜Kt � (aKs + bKt)

��� 
C(⌘K

s1 ,Ks2
+⇣K

s1 ,Ks2
), and

��� ˜Ks[
˜Kt[.]]�Ks[Kt[.]]

���  C(⌘K
s2 ,Kt2

+⌘K
s1 ,Ks2

+⇣K
s2 ,Kt2

+

⇣K
s1 ,Ks2

).
Further, suppose Ks maps Hs ! Hs and ⇡K

s1
= ⇡K

s2
= ⇡K

s, so ⌘K
s1 ,Ks2

= ⌘K
s

and ⇣K
s1 ,Ks2

= ⇣K
s

. Suppose (I+Ks)
�1 is bounded. Then

���(IK
s

+

˜Ks)
�1

˜Kt � (I +Ks)
�1Kt

��� 
C(⌘K

s

,K
t

+ ⌘K
s

+ ⇣K
s

,K
t

+ ⇣K
s

).

Proof. See Appendix F.

As a consequence of this lemma, the rates of convergence for wavelet approx-
imations of operators of the form K[.] =

R
K(x, y)[.]dy given in section 5.2 con-

tinue to hold for compositions, linear combinations, and transformations of the form
(I + Ks)

�1Kt of the matrix valued approximations of these operators. In particu-
lar, when constructed by approximating each operator in inegral form by its wavelet
approximation and functions thereof by the corresponding functions of these rep-
resentations, each subcomponent of the matrix representation of the derivatives of
the geography model converges at the rates given in theorem 2, including ˜d!

d�
:=

(IK� ˜dw
dY

˜dY
dw
� ˜dw

dT
˜dT
dw
)

�1
(

˜dw
dY

˜dY
d�

+

˜dw
dT

˜dT
d�
)�µ( ˜dT

dw
(IK� ˜dw

dY
˜dY
dw
� ˜dw

dT
˜dT
dw
)

�1
(

˜dw
dY

˜dY
d�

+

˜dw
dT

˜dT
d�
)+

˜dT
d�
)

where a tilde indicates the wavelet approximation of the corresponding operator.

E Existence of Solutions To Rational Expectations

Models with Function-Valued States

In this appendix, I provide a set of sufficient conditions for the existence of a differ-
entiable and stable solution to a recursive model with function valued states, which
is the object for which an approximation algorithm is described in the main paper.
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Local Existence of an Equilibrium

The requirement that the derivatives of the equilibrium policy operators satisfy the
formulas (4.3) and (4.6) in the main paper represents a necessary condition that any
differentiable recursive equilibrium solution must satisfy at the steady state. To ensure
that an equilibrium characterized by this condition in fact exists and that it is locally
stable, conditions beyond those needed to justify the existence of stable derivatives at
this point may be needed. Existence of equilibria has previously been demonstrated in
dynamic heterogeneous agent models of various types: for models with no aggregate
disturbances, see Acemoglu & Jensen (2012), for models with aggregate disturbances
see Cao (2016) or Bergin & Bernhardt (1995), and for models with finite numbers
of agents, see Mertens & Judd (2012). In the case that an equilibrium of the model
may be characterized by the methods used in those papers, our method provides
a numerical procedure to characterize a set of local properties. However, it may
be desirable, in the case of a wide class of models which may be characterized by
the methods in this paper, to provide a general existence argument based on the
linearization. As such, we demonstrate that the local existence argument of Jin &
Judd (2002) may be extended to the case of infinite dimensional state variables.

In particular, under some additional continuity conditions, an implicit function
theorem in Banach spaces (see e.g. Kesavan (2004, Ch. 1)) may be used to show
that the conditions provided under which a linearization exists are also sufficient
for the existence of an equilibrium with no aggregate shocks in a neighborhood of
a steady state. This is a separate task from demonstration of the existence of a
steady state equilibrium, which must be shown by other methods, as in Acemoglu
& Jensen (2012) or by some other fixed point argument valid in infinite dimensional
spaces. In some cases, especially if individual agent decision rules are correspondence
valued, the existence of a steady state may require the introduction of auxiliary
state variables to generate a Markov structure; this occurs in Acemoglu & Jensen
(2012) and Cao (2016), along with, more generally, much of the literature on implicit
recursive contracts. As characterizing a steady state is a model-specific task, we will
simply require that existence has been verified for the model in question and that the
equilibrium conditions which are provided to the linearization procedure are sufficient
to characterize an equilibrium.

Given the existence of an equilibrium away from the steady state but with no
aggregate shocks, one may prove existence of an equilibrium with “small” aggregate
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shocks by applying the implicit function theorem to the deterministic system around
� = 0 as in Mertens & Judd (2012). Unfortunately, the continuation argument they
use to demonstrate existence in the presence of large noise does not directly apply
in this case, as it requires compactness of the equilibrium operators, which cannot
generally be guaranteed when the state space is infinite dimensional. As such, the
approximations computed in this paper should be considered as valid in the “small
noise” regime.

Formally, we have the following two theorems: proofs are provided in the next
section.

Theorem 5. Suppose there exist x⇤, y⇤ such that F (x⇤, y⇤, x⇤, y⇤, 0) = 0, F is con-
tinuous with uniformly continuous Fréchet derivatives with respect to x, y, x0, and
y0 in a neighborhood ⌦ ⇥ ⌦ ⇢ H1 ⇥ H1 of x⇤, y⇤, x⇤, y⇤, with Fréchet derivatives at
this point given by B = �Fx,�Fy, A = Fx0 , Fy0 such that (B,A) is a �-regular
operator pair satisfying the conditions of Lemma (5) on existence of Schur decom-
position for � the complex unit circle and so having generalized Schur decomposition
(B,A) = (Q⇤TU,Q⇤SU). Assume U22 is complete and has bounded inverse on Im U2

and M(y, x) := Fyy + (Fx0 � Fy0U
�1
22 U21)x : Hy,Hx ! H2 has bounded inverse.

Then, there exists a neighborhood N of x⇤ in Hx and continuous, Fréchet differen-
tiable operators g(x), h(x) mapping N to Hy and Hx, respectively, such that for any
x0 2 N , the sequence {xt, yt}1t=0 defined recursively by yt = g(xt), xt+1 = h(xt) satis-
fies F (xt, yt, xt+1, yt+1, 0) = 0 8t � 0 and converges in norm to x⇤, y⇤. Further, g(x)
and h(x) are themselves Fréchet differentiable with first derivatives gX = �U�1

22 U21

and hX = (U11 + U12gX)�1S�1
11 T11(U11 + U12gX).

Remark. Uniform continuity of the derivatives is needed to ensure convergence uni-
formly over time: a sufficient condition for this would be that F is twice continuously
differentiable in ⌦ ⇥ ⌦. The assumption of continuous Fréchet derivatives could be
replaced by strong Hadamard differentiability, with the corresponding weaker result
that the policy operators are Hadamard differentiable, using the implicit function the-
orem for Hadamard derivatives of Craven & Nashed (1982) with only minor changes
in the proof. Such a replacement may be necessary for certain classes of equilibrium
operators: Craven & Nashed (1982) provide examples of operators which are strongly
Hadamard differentiable but not Fréchet differentiable. The same result may also be
used to relax the assumption that the inverse of M is bounded, at cost of a weaker
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norm, which may be useful for example if M is compact. However, the argument
for existence of a stochastic equilibrium in the next theorem does rely on the as-
sumption that M has bounded inverse in a way that cannot be alleviated by using
this weaker version of the implicit function theorem. Note that this theorem requires
completeness of U22, ruling out cases analogous to those in which there are more sta-
ble eigenvalues than predetermined variables, in which there may be indeterminacy.
While in these cases at least one equilibrium may possibly still exist, this method of
proof does not apply directly.

Proof. See Appendix F.

Next, one may use the deterministic recursive equilibrium constructed above,
along with another application of the implicit function theorem, to demonstrate ex-
istence of an equilibrium for � in a neighborhood of 0, and so with stochastic shocks.
The demonstration of existence follows closely the argument (but not the notation)
leading to Jin & Judd (2002, Theorem 6).

Theorem 6. Suppose the conditions of the previous theorem hold, that EF (x, y, x0, y0, �)

is continuous and three times continuously differentiable with respect to x, y, x0, y0 in
a neighborhood of (x⇤, y⇤, x⇤, y⇤, 0) and differentiable with respect to � at (x⇤, y⇤, x⇤, y⇤, 0),
and suppose further that [Fy, Fx0

] has a bounded inverse from H2 to Hy ⇥Hx and the
operator [Fy, Fx0

]

�1
[Fy0 , Fy0gX ] : Hy⇥Hx ! Hy⇥Hx has spectrum inside the complex

unit circle. Let z satisfy Ez0 = 0 and have bounded support in Hx. Then, there exists
a neighborhood of � = 0 and a neighborhood U of x⇤ on which there exist bounded
functions with bounded derivatives g(x, �), h(x, �) satisfying g(x, 0) = g(x), h(x, 0) =

h(x) as defined in the previous theorem and EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) +

�⌘z0, �), �) = 0 for all � and x in this neighborhood.

Remark. The increase from once to three times continuous differentiability here is
imposed in order to ensure uniform continuity of the second derivatives, which en-
ter through a chain rule condition due to the recursive construction. This theorem
demonstrates conditions which guarantee the existence of an implicit solution to a
set of equilibrium equations. This condition is still weaker than those of Jin & Judd
(2002), who require analyticity, albeit mainly for the ability to perform perturbations
to arbitrary order. The requirement of bounded support is somewhat restrictive, but
without other strong assumptions is very hard to relax: see Jin & Judd (2002) for

85



discussion. Note that for this result to guarantee existence of an equilibrium, a sta-
tionary solution to EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0, �), �) = 0 must be
a sufficient and not merely a necessary condition for equilibrium. That is, if desider-
ata for an equilibrium such as transversality or second order conditions are excluded
from F , the solution is not guaranteed to satisfy them. Often, auxiliary equations
may need to be added to the ‘natural’ characterization of a solution to fully charac-
terize an equilibrium, as in Cao (2016). However, the result does guarantee existence
of a candidate solution for which sufficient conditions may then be verified.

Proof. See Appendix F.

Remark. In the case where the equilibrium conditions are differentiable also in �, the
implicit function characterizes the derivatives with respect to �.

Corollary. Let EF (x, y, x0, y0, �) be Fréchet differentiable in all its arguments (includ-
ing �) at (x⇤, y⇤, x⇤, y⇤, 0). Further, suppose � does not enter into F directly (as op-
posed to entering via the transition equation x2 = h2(x2)+�z0). Then g(x, �), h(x, �)

are differentiable in � and have derivative at � = 0 given by g�(x, 0) = 0, h�(x, 0) = 0.

Proof. This follows from the implicit function theorem used to construct g(x, �), h(x, �)
and the fact that, evaluated at � = 0

d

d�
EF (x, g(x), h(x) + �⌘z0, g(h(x) + �⌘z0), �) = E(Fx0

(x, g(x), h(x), g(h(x)), 0)[⌘z0]

+ Fy0(x, g(x), h(x), g(h(x)), 0)gx(h(x))[⌘z
0
] + F�(x, g(x), h(x), g(h(x)), 0)).

By the assumption that Ez0 = 0 and the linearity of the Fréchet derivative for all
x, the first two terms are 0. By assumption F� = 0, so the final term disappears as
well.

Remark. This result is a direct extension to this setting of the result of Schmitt-Grohe
& Uribe (2004) that the first order impact of the standard deviation parameter is 0.
However, the result is slightly stronger, as the implicit function theorem used here
(as in Jin & Judd (2002)) takes as argument the policy operators as functions of
x, and so the implicit function theorem characterizes the partial derivative of the
operators g(.) and h(.) in the space of functions with respect to �. The implication is
that the zero first order effect of adding aggregate noise holds not only at the steady
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state x⇤ but also at any other initial condition x, a result which may be useful for
extending models with transition dynamics. The assumption that F� = 0 is generally
not restrictive, as � is not a structural parameter but an auxiliary parameter scaling
the deviation of the equilibrium away from the nonstochastic steady state. To embed
structural assumptions regarding the variance of the shocks, the random element z

may be taken to have arbitrary (trace class) covariance operator, which is then scaled
by �.

F Proofs

F.1 Section 5 Proofs

Proof. Of Theorem (1). The proof proceeds in two steps: first, showing that the gen-
eralized Schur decomposition is continuous with respect to the approximation, and
then showing the policy operators are continuous in the generalized Schur decompo-
sition.

First, note that

k( ˜BK , ˜AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B,A)kB 

k( ˜BK , ˜AK
)� (BK , AK

)kB + k(BK , AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B,A)kB =

k( ˜BK , ˜AK
)� (BK , AK

)kB+
k(I�⇡K

)(BI , AI)(I�⇡K
)�(I�⇡K

)(B,A)(I�⇡K
)�(I�⇡K

)(B,A)⇡K�⇡K
(B,A)(I�⇡K

)kB =

k( ˜BK , ˜AK
)�(BK , AK

)kB+k�(I�⇡K
)(BC , AC)(I�⇡K

)�(I�⇡K
)(BC , AC)⇡

K�⇡K
(BC , AC)(I�⇡K

)kB
= k( ˜BK , ˜AK

)� (BK , AK
)kB + k⇡K

(BC , AC)⇡
K � (BC , AC)kB  ⇣K + ⌘K

where the third expression follows from the decomposition of (B,A) = (BI , AI)+

(BC,, AC), and the construction of ⇡K so that (I�⇡K
)(BI , AI)⇡K

= 0 and ⇡K
(BI , AI)(I�

⇡K
) = 0.
The consistency of the approximation of (B,A) implies consistency of the com-

ponents of the Schur decomposition by (3) and (4) and the bound on dif(B,A).
Note that the generalized Schur decomposition of ( ˜BK , ˜AK

) and (BI , AI) separately
is equivalent to (one ordering of) the generalized Schur decomposition of their sum.
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More precisely,

"
˜Q⇤K
1 0 , ˜Q⇤K

2 0

0 Q⇤I
1 0 Q⇤I

2

#
2

66664

˜TK
11 0

˜TK
12 0

0 T I
11 0 T I

12

0 0

˜TK
22 0

0 0 0 T I
22

,

˜SK
11 0

˜SK
12 0

0 SI
11 0 SI

12

0 0

˜SK
22 0

0 0 0 SI
22

3

77775

2

66664

˜UK
11 0

˜UK
12 0

0 U I
11 0 U I

12

˜UK
21 0

˜UK
22 0

0 U I
21 0 U I

22

3

77775

where an I superscript indicates a component corresponding to the Schur decom-
position on Ker ⇡K of (BI , AI), is a generalized Schur decomposition of ( ˜BK , ˜AK

) +

(I�⇡K
)(BI , AI)(I�⇡K

) corresponding to curve �. Note that by operator norm con-
vergence, for sufficiently large K, �min(� ˜BK � ˜AK

+ (I � ⇡K
)(�BI�, AI)(I � ⇡K

)) �
�min(�B � A) � 2(⇣K + ⌘K) > 0 uniformly in � 2 � by Weyl’s inequality and the
compactness of � and so (

˜BK , ˜AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
) is �-regular and so

the generalized Schur decomposition described exists.
To bound kgK � gXk, note

gK = �( ˜UK
22)

�1
˜U21 � (U I

22)
�1U I

21 = �
 

˜UK
22 0

0 U I
22

!�1 
˜UK
21 0

0 U I
21

!
= �( ˜U22)

�1
˜U21.

By (3),

k ˜U1 � U1k  kU1kkI � (I + P ⇤P )

� 1
2k+ kPk

���U2(I + P ⇤P )

� 1
2

���

 CkPk+ o(kPk)  C
2(⇣K + ⌘K)

�

for some constant C < 2 + ✏ for any ✏, for K sufficiently large, where � > 0 by the
assumption that dif(B,A)>0. As a result, by invertibility of U22, Weyl’s inequality,
and the triangle inequality,

���� ˜U�1
22

˜U21 + U�1
22 U21

���  C 2(⇣
K

+⌘
K

)
�

for some constant C

for K large enough.

88



Similarly, we have

hK =

0

@
 

˜UK
11 0

0 U I
11

!
�
 

˜UK
12 0

0 U I
12

! 
˜UK
22 0

0 U I
22

!�1 
˜UK
21 0

0 U I
21

!1

A
�1

⇤
 

˜SK
11 0

0 SI
11

!�1 
˜TK
11 0

0 T I
11

!
⇤

0

@
 

˜UK
11 0

0 U I
11

!
�
 

˜UK
12 0

0 U I
12

! 
˜UK
22 0

0 U I
22

!�1 
˜UK
21 0

0 U I
21

!1

A

= (

˜U11 +
˜U12gK)

�1
(

˜S11)
�1

˜T11(
˜U11 +

˜U12gK)

Applying the triangle inequality, (3), (4), and convergence of gK , this implies that
for some constant C, for K large enough, khK � hxkop  C ⇣

K

+⌘
K

�
, as claimed.

A demonstration that for appropriately smooth functions wavelet representations
provide the necessary error control to ensure consistency follows from some standard
estimates regarding wavelet coefficients.

Proof. of Theorem (2). First we demonstrate bounds on ⌘K , the error induced by
truncating to a K term wavelet series, using results on wavelet coefficients and oper-
ator norm bounds from Johnstone (2013), then bounds on ⇣K , the error induced by
calculating the inner products with the wavelet basis by quadrature using quadrature
error estimates from Beylkin et al. (1991).

First, denoting the blocks of (BC , AC) as Kr,ij, max{��BK
C � BC

��
op
,
��AK

C � AC

��
op
} 

Jmax

r,i,j

��KK
r,ij �Kr,ij

��
op

by definition of operator norm. Because an orthonormal basis

is used, ⇡K
(BI , AI)⇡K is simply expressed in terms of identity matrices on this space,

and so can be evaluated exactly.
The projection of Kr,ij onto the space of the first Ki⇥Kj wavelet coefficients can

be expressed using the inner product with the tensor product over the first Ki ⇥Kj

orthonormal basis functions {�k}Ki

k=1 and {�k}Kj

k=1 as

⇡K
iKr,ij⇡

K
j

[f(y)] =

K
jX

k=1

K
iX

l=1

hKr,ij(x, y),�k(x)�l(y)i h�k(y), [f(y)]i�l(x)

=

R
ˆKr,ij(x, y)f(y)dy where ˆKr,ij(x, y) =

PK
j

k=1

PK
i

l=1 hKr,ij(x, y),�k(x)�l(y)i�k(y)�l(x)
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is the Ki⇥Kj term projection of the kernel of the integral operator onto the wavelet
basis. Since Kr,ij(x, y) 2 ⇤

↵
r,ij

([0, 1]di ⇥ [0, 1]dj) and �k are a standard wavelet basis,
we can use norm bounds to control the error in this projection. Sup norm bounds
available in Chen & Christensen (2015), show that under the ↵r,ij�Hölder assump-
tion, ��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

= O((KiKj)
�↵

r,ij

/(d
i

+d
j

)
)

when wavelets satisfying Condition (3) are used. In particular, adapting the proof of
their Lemma 2.4, letting

`K
i

K
j

= sup

f2L1([0,1]di⇥[0,1]dj )

������

K
jX

k=1

K
iX

l=1

hf(x, y),�k(x)�l(y)i�k(y)�l(x)

������
L1

/ kf(x, y)kL1

be the Lebesgue constant for the tensor product wavelet basis

��� ˆKr,ij(x, y)�Kr,ij(x, y)
���
L1([0,1]di⇥[0,1]dj )

 (1 + `K
i

K
j

)O((KiKj)
�↵

r,ij

/(d
i

+d
j

)
),

and by their Theorem 5.1 applied in the case of uniform density, `K
i

K
j

is bounded
uniformly in Ki and Kj.

By compactness of the domain, we have
Z ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dx  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )Z ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dy  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

almost surely, so by Young’s inequality (Johnstone, 2013, Theorem C.26)

sup

kfk=1

����
Z

(

ˆKr,ij(x, y)�Kr,ij(x, y))f(y)dy

����  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]di⇥[0,1]dj )

 C(KiKj)
�↵

r,ij

/(d
i

+d
j

)

As this holds for each r, i, j, we have

⌘K = max{��BK
C � BC

��
op
,
��AK

C � AC

��
op
}  O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
)
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as claimed, by bounding the operator norm by the Frobenius norm of the J⇥J matrix
with i, j element equal to the operator norm of the i, j block.

To use this result to bound the number of basis functions needed to obtain a total
operator norm error of order ✏, letting ↵̄ = min

r,ij

2↵
r,ij

d
i

+d
j

, by setting {Kj}Jj=1 all equal and

proportional to (

J
✏
)

1
↵̄ , obtain Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)
= O(✏). This results in a basis

of size K =

PJ
j=1 Kj proportional to J(J

✏
)

1
↵̄ as claimed.

Next, bound ⇣K , the error induced by approximating each integral operator in
(BC , AC) by a matrix with entries given by the discrete wavelet transform of Kr,ij(xs, yt).
For convenience, define the level of the dj�tensor product of multiresolution analyses
of Im ⇡K

j in each dimension as {njp}djp=1, and let the total number of basis functions
in the tensor product basis satisfy Kj = ⇧

d
j

p=12
n
jp .18 The discrete wavelet transform

in one dimension is a unitary mapping on the space spanned by the scaling func-
tions �n

j

,s := 2

�n
j

/2�(2�n
jx � s + 1) at multiresolution level nj from vectors whose

entries are inner products with these scaling functions to vectors whose entries are
inner products with the orthonormal wavelet basis spanning the same space, and in
multiple dimensions it maps the tensor product of scaling functions representation to
the tensor product of wavelets representation. As the operator norm is unitarily in-
variant, it therefore suffices to bound the operator norm error in terms of the error in
the representation defined in terms of scaling function coefficients. By the compact
support, vanishing moment condition, and Hölder exponent bound, Beylkin et al.
(1991) show by a Taylor expansion argument that if a scaling function with the prop-
erty

R
�(x+ ⌧)xmdx = 0 for all integers m  ↵+ 1, for some integer ⌧ , is used, then

any f(x) 2 ⇤

↵
[0, 1] satisfies 2�n/2f(2�n

(k � 1 + ⌧)) =
R
f(x)�n,k(x)dx+O(2

�n(↵+ 1
2 )
)

uniformly in k, and for multivariate functions f(x1, . . . , xd
) 2 ⇤

↵
[0, 1]d, a straightfor-

ward extension shows

(2

�n1/2 . . . 2�n
d

/2
)f(2�n

(k1 � 1 + ⌧), . . . , 2�n
(kd � 1 + ⌧)) =

Z
. . .

Z
f(x1, . . . , xd)�n,k1(x1) . . .�n,kd(xd)dx1 . . . dxd +O(

dY

p=1

2

�n
p

/2
dX

p=1

2

�↵n
p

)

18One can avoid restricting to powers of 2 by using a larger number of functions at the finest level,
at the cost of more cumbersome notation. The order of all asymptotic results remains the same.
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Applying this to 1p
K

i

K
j

Kr,ij(xs, yt) we see that its entries satisfy

�����
1p
KiKj

Kr,ij(xs, yt)�
D
Kr,ij(x, y),⇧

d
i

p=1�n
ip

,s+⌧ (xp)⇧
d
j

p=1�n
jp

,t+⌧ (yp)
E�����

= O((

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2
)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

uniformly in s, t. To control the operator norm error induced by this approxima-
tion to the matrix of scaling function coefficients, we again use Young’s inequality,
combined with the fact that the scaling functions �n

j

,s are rescaled translations of
a single bounded and compactly supported function over a regular grid, to bound
the operator norm error in the quadrature approximation of the finite projection
of Kr,ij(x, y) onto a finite tensor product wavelet basis. In particular, denoting
✓ijst :=

D
Kr,ij(x, y),⇧

d
i

p=1�n
ip

,s+⌧ (xp)⇧
d
j

p=1�n
jp

,t+⌧ (yp)
E

and ˆ✓ijst :=
1p
K

i

K
j

Kr,ij(xs, yt)

the L1 norm error induced by quadrature in the Ki ⇥Kj term representation of the
kernel is equal to

sup

x,y2[0,1]di⇥[0,1]dj

������

K
iX

s=1

K
jX

t=1

(✓ijst � ˆ✓ijst)⇧
d
i

p=1�n
ip

,s+⌧ (xp)⇧
d
j

p=1�n
jp

,t+⌧ (yp)

������

As noted in Chen & Christensen (2015, Section 6), by the assumption that the one-
dimensional scaling function � has support within a compact interval, with length no
greater than 3N + 1 for a fixed integer N (depending order of the wavelet used), at
most 3N +1 scaling functions at any fixed level nj may overlap on any set of positive
Lebesgue measure, and so over the di+dj-dimensional tensor product space, no point
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x, y is covered by more than (3N + 1)

d
i

+d
j scaling functions.19 As a result

sup

x,y2[0,1]di⇥[0,1]dj

������

K
iX

s=1

K
jX

t=1

(

ˆ✓ijst � ✓ijst)
d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N + 1)

d
i

+d
j

max

s,t

���ˆ✓ijst � ✓ijst
��� sup

x,y

������

d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N+1)

d
i

+d
jO(

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2
)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

d
iY

p=1

2

n
ip

/2

d
jY

p=1

2

n
jp

/2
sup

x
|�(x)|

= O((3N + 1)

d
i

+d
j

(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

by boundedness and the definition of �n
jp

,s. When the number of basis functions used
in each dimension is identical for all dimensions p = 1 . . . di and 1 . . . dj, this term is
bounded by

O((3N + 1)

d
i

+d
j

(di + dj)(KiKj)
�↵

r,ij

/(d
i

+d
j

)
)

This is the same order as the projection result, except for a multiplicative constant
depending on dimension. Let ¯d = max

j
2dj. Then, if the number of basis functions is

set so that {Kj}Jj=1 all equal and proportional to (

(3N+1)d̄d̄J
✏

)

1
↵̄ , the above bound along

with Young’s inequality gives an operator norm error bound bound for each block no
greater than O(

✏
J
). With each of J2 blocks bounded by no more than this quantity,

obtain the bound

⇣K  O(✏)

exactly as claimed.

F.2 Appendix A Proofs

Proof. of Lemma (2). We generate Q and U constructively, then verify their prop-
erties. Choose a complete orthonormal basis on Im⇡1, denoted {u1i}1i=1 and then a

19The vanishing moments property characterizing Coiflets also requires that the length of the
filter defining the scaling function be longer by a factor of 1.5 than the filter for the corresponding
standard Daubechies wavelet. This results in an larger constant in front of the quadrature error and
the running time of the discrete wavelet transform, but does not affect the rate of convergence.
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complete orthonormal basis on the orthogonal complement of Im⇡1 in H1, denoted
{u2i}1i=1. The eigenvectors are not, in general, such a basis, because ⌦1 and ⌦2 are
not assumed self-adjoint and so nothing requires their eigenvectors to be orthogonal
vectors. Then, U1 is the operator

P1
i=1 hu1i, .i e1i where {e1i }1i=1 are an arbitrary or-

thonormal basis on E1, a space isometrically isomorphic to Im⇡1, U2 is the operator
P1

i=1 hu2i, .i e2i where {e2i }1i=1 are an arbitrary orthonormal basis on E2, a space iso-
metrically isomorphic to H1/Im⇡1. Likewise, choose a complete orthonormal basis
{q1i}1i=1 for the image of (M1, G1) and a complete orthonormal basis for the orthog-
onal complement of this space in HY , {q2i}1i=1. We define Q1 =

P1
i=1 hq1i, .i f 1

i and
Q2 =

P1
i=1 hq2i, .i f 2

i , for {f 1
i }1i=1 and {f 2

i }1i=1 orthonormal bases of F1 and F2, spaces
isometrically isomorphic to the domains of Q1 and Q2 respectively.

Next, we show that these induce an upper triangular decomposition. We define
 "

M11 M12

M21 M22

#
,

"
G11 G12

G21 G22

#!
=

 "
Q1

Q2

#
M
h
U⇤
1 U⇤

2

i
,

"
Q1

Q2

#
G
h
U⇤
1 U⇤

2

i!

Using A.1, we have that (MU⇤
1 , GU⇤

1 ) = (M1U⇤
1 , G1U⇤

1 ) since the range of U⇤
1 is

Im⇡1, and the restriction of (M,G) to this space is (M1, G1). Then, since the domain
of Q2 is orthogonal to Im(M1, G1), we have (M21, G21) = (0, 0), so this is a triangular
decomposition.

To characterize the spectrum of the decomposition, first note that �(M1, G1) =

�(M,G) \ �+ and �(M2, G2) = �(M,G) \ �� by Gohberg et al. (1990) Theorem
IV.1.1. (M11, G11) may be written as (Q1MU⇤

1 , Q1GU⇤
1 ) = (Q1M1U⇤

1 , Q1G1U⇤
1 ). Con-

sider � 2 ⇢(M1, G1). Then �M11 � G11 = �Q1M1U⇤
1 �Q1G1U⇤

1 = Q1(�M1 � G1)U⇤
1 ,

which has inverse U1(�M1�G1)
�1Q⇤

1 which is bounded since (�M1�G1)
�1 is bounded,

by definition of the resolvent set, and U1 and Q⇤
1 are since they are unitary by con-

struction. So �(M11, G11) ⇢ �(M1, G1) = �(M,G) \�+.
Characterization of the spectrum of (M22, G22) requires a bit more care. (M22, G22)

may be written as

(Q2MU⇤
2 , Q2GU⇤

2 ) = (Q2M(⇡1 + (I � ⇡1))U⇤
2 , Q2G(⇡1 + (I � ⇡1))U⇤

2 )

= (Q2M1⇡1U
⇤
2 , Q2G1⇡1U

⇤
2 ) + (Q2M2(I � ⇡1)U⇤

2 , Q2G2(I � ⇡1)U⇤
2 )

= (Q2M2(I � ⇡1)U⇤
2 , Q2G2(I � ⇡1)U⇤

2 ) (F.1)
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where the second line follows from A.1 and the final line follows from the fact that
the domain of Q2 is orthogonal to the range of (M1, G1). Consider � 2 ⇢(M2, G2).
By definition of the resolvent, T (�) := (�M2 � G2)

�1 is a bounded operator for all
such �. Then �M22 � G22 = Q2(�M2 � G2)(I � ⇡1)U⇤

2 . I claim that U2T (�)Q⇤
2 is

a bounded inverse of �M22 � G22. To see this, note that Q⇤
2Q2 is equal to IH

Y

/Im⇡2

and U⇤
2U2 = IH

X

/Im⇡1 . As a result, we have U2T (�)Q⇤
2Q2(�M2 � G2)(I � ⇡1)U⇤

2 =

U2(I � ⇡1)U⇤
2 = U2U⇤

2 = IH
X

/Im⇡1 , where we use the fact that U2⇡1 = 0 since U2 has
domain orthogonal to the image of ⇡1. By repeating the steps of (F.1), one can show
Q2(M2, G2)(I�⇡1)U⇤

2 = Q2(I�⇡2)(M2, G2)U⇤
2 , which ensures that Q2(�M2�G2)(I�

⇡1)U⇤
2U2T (�)Q⇤

2 = Q2(I � ⇡2)(�M2 � G2)U⇤
2U2T (�)Q⇤

2 = Q2(I � ⇡2)Q⇤
2 = IH

Y

/Im⇡2 ,
since Q2⇡2 = 0. As a result, �(M22, G22) ⇢ �(M2, G2) = �(M,G) \��.

To show the reverse inclusion, note that �(M,G) = �(QMU⇤, QGU⇤
) by unitarity

of Q and U . Next, we show that �(QMU⇤, QGU⇤
) = �(M11, G11) [ �(M22, G22).

Since �+ and �� are disjoint, �(M11, G11) ⇢ �(M,G) \ �+, and �(M22, G22) ⇢
�(M,G) \ ��, this implies that �(M11, G11) = �(M,G) \ �+ and �(M22, G22) =

�(M,G) \ ��, as claimed. To show this, consider � 2 ⇢(M11, G11) \ ⇢(M22, G22).

Then �QMU⇤ � QGU⇤
=

"
�M11 �G11 �M12 �G12

0 �M22 �G22

#
has bounded inverse given

by "
(�M11 �G11)

�1 �(�M11 �G11)
�1
(�M12 �G12)(�M22 �G22)

�1

0 (�M22 �G22)
�1

#

and so �(QMU⇤, QGU⇤
) ⇢ �(M11, G11)[�(M22, G22). Next, suppose � 2 �(M11, G11)

and assume for contradiction that � 2 ⇢(QMU⇤, QGU⇤
), and so �QMU⇤ � QGU⇤

has some bounded inverse

"
a b

c d

#
. Then

"
a b

c d

#"
�M11 �G11 �M12 �G12

0 �M22 �G22

#
=

"
I 0

0 I

#
and so a(�M11 � G11) = I, implying that �M11 � G11 has bounded in-

verse a, a contradiction. Similarly, if � 2 �(M22, G22), then if �QMU⇤ � QGU⇤ had

some bounded inverse

"
a b

c d

#
then

"
�M11 �G11 �M12 �G12

0 �M22 �G22

#"
a b

c d

#
would

equal

"
I 0

0 I

#
, implying (�M22 � G22)d = I, which is assumed false. As a result,

�(QMU⇤, QGU⇤
) � �(M11, G11) [ �(M22, G22), and the claim is shown.

Proof. of Lemma (3). Begin by noting that if P{�
i

} is a projector onto an eigenspace
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of ⌦1 corresponding to nonzero eigenvalue �i (sorted in arbitrary but fixed order), it is
also a projector onto an eigenspace of (M1, G1) corresponding to the same eigenvalue.
By compactness, any nonzero element of the spectrum of ⌦1 is isolated and an eigen-
value, and by equality of spectra corresponds to an isolated point in the spectrum
�(M1, G1). As a result, one may write the projector onto the eigenspace associated
with �i of ⌦1 as P⌦1

{�
i

} :=

1
2⇡◆

R
�
�

i

(⇣I1 � ⌦1)
�1d⇣, where ��

i

is a closed Cauchy curve
enclosing �i, and the projector onto the space associated with element �i of the spec-
trum of pair (M1, G1) as P (M1,G1)

{�
i

} :=

1
2⇡◆

R
�
�

i

(⇣G1 �M1)
�1G1d⇣ (See Gohberg et al.

(1990, Ch. I.2 and IV.1)). Since ⌦1 = G�1
1 M1,

P (M1,G1)
{�

i

} =

1

2⇡◆

Z

�
�

i

(⇣G1 �M1)
�1G1d⇣ =

1

2⇡◆

Z

�
�

i

((G1G
�1
1 )(⇣G1 �M1))

�1G1d⇣

(F.2)

=

1

2⇡◆

Z

�
�

i

((G1)(⇣I1 � ⌦1))
�1G1d⇣

=

1

2⇡◆

Z

�
�

i

(⇣I1 � ⌦1)
�1G�1

1 G1d⇣

= P⌦1
{�

i

}

Compactness also guarantees that the dimension of the image of P{�
i

} is finite (Go-
hberg et al. , 1990, Thm II.3.2), and so by equality of spectra, the subspaces associated
with points not equal to zero in the spectrum of (M1, G1) are all finite dimensional.
As a result, we may choose for each i, a finite set of basis vectors, of cardinality ki, for
the space ImP{�

i

} and a basis for the image of the pair (MP{�
i

}, GP{�
i

}) which must
be of dimension ki as GP{�

i

} must be of full rank since G1 is. In particular, as on this
space the operator pair has a representation as a pair of ki⇥ki-dimensional matrices,
we may without loss of generality use orthonormal basis vectors {q1i1, . . . , q1ik

i

} for the
image of (MP{�

i

}, GP{�
i

}) and {p1i1, . . . , p1ik
i

} for ImP{�
i

} such that with respect to
these bases, M and G are upper triangular with diagonal elements of M and G iden-
tically equal to �i and ⌧i, respectively, where �

i

⌧
i

= �i. Such a representation exists
by the generalized Schur decomposition for finite dimensional matrix pairs (Stewart
& Sun, 1990, Th. VI.1.9). Note that while these basis vectors are orthogonal within
each block, in general ImP{�

i

} is not necessarily orthogonal to ImP{�
j

} for i 6= j as
these are oblique, not orthogonal projections.

For Ker ⇡1, compactness of ⌦2 permits an analogous construction of a countable
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sequence of finite dimensional eigenprojections associated to isolated points of the
spectrum, with the difference that the projection onto the space associated with
point �i in the spectrum �(M2, G2) is equal to projection associated with nonzero
eigenvalue 1

�
i

2 �(⌦2). That is to say, in the notation above, P (M2,G2)
{�

i

} = P⌦2

{ 1
�

i

}
for �i 6= 1. Since Im P⌦2

{ 1
�

i

} is a finite dimensional subspace of dimension ki, and

since MP (M2,G2)
{�

i

} is full rank since M2 is, we may define sets of orthonormal basis
vectors {q2i1, . . . , q2ik

i

} on the image of (MP (M2,G2)
{�

i

} , GP (M2,G2)
{�

i

} ) and {p2i1, . . . , p2ik
i

} on
ImP (M2,G2)

{�
i

} such that with respect to these basis vectors, (M,G) has a representation
as a pair of ki⇥ki upper-triangular Schur matrices with diagonal elements identically
equal to the corresponding eigenvalue pair {�i, ⌧i} where �

i

⌧
i

= �i.
For the space Im ⇡1\Span{p111, . . . , p11k1 , p121,...}, choose choose an arbitrary com-

plete orthonormal basis, say {p1?1 , p1?2 , . . .} and for Im ⇡2\Span{q111, . . . , q11k1 , q121,...},
choose a basis {q1?1 , q1?2 , . . .}. Likewise, for the space Ker ⇡1\Span{p211, . . . , p21k1 , p221,...},
choose choose an arbitrary complete orthonormal basis, say {p2?1 , p2?2 , . . .} and for
Ker ⇡2\Span{q211, . . . , q21k1 , q221,...} choose a basis {q2?1 , q2?2 , . . .}. These bases may in
general be infinite dimensional and are not necessarily orthogonal to the bases defined
for other spaces. To produce the stated decomposition, these bases will be used to
construct an orthogonal basis with the desired properties.

To produce the desired decomposition, order the sets of vectors as ({p111, . . . , p11k1},
{p121, . . . , p12k2}, . . . , {p1?1 , p1?2 , . . .}, . . . , {p211, . . . , p21k1}, {p221, . . . , p22k2}, . . . , {p2?1 , p2?2 , . . .}, . . .)
and ({q111, . . . , q11k1}, {q121, . . . , q12k2}, . . . , {q1?1 , q1?2 , . . .}, . . . , {q211, . . . , q21k1}, {q221, . . . , q22k2},
. . . , {q2?1 , q2?2 , . . .}, . . .) and apply Gram-Schmidt orthonormalization to the count-
able sequences to produce a pair of orthonormal bases {p̃111, . . . , p̃11k1 , p̃121, . . . , p̃1?1 , . . . ,

p̃211, . . . , p̃
2
1k1 ,p̃

2
21, . . . , p̃

2?
1 , . . .} and {q̃111, . . . , q̃11k1 , q̃121, . . . , q̃1?1 , . . . , q̃211, . . . , q̃

2
1k1 , q̃

2
21, . . . , q̃

2?
1 , . . .}

of HX and HY respectively. We may then define E1 = Span{p̃111, . . . , p̃11k1 , p̃121, . . .},
F1 = Span{q̃111, . . . , q̃11k1 , q̃121, . . .}, E?

1 = Span{p̃1?1 , p̃1?2 , . . .}, F?
1 = Span{q̃1?1 , q̃1?2 , . . .},

E2 = Span{p̃211, . . . , p̃21k1 , p̃221, . . .}, F2 = Span{q̃211, . . . , q̃21k1 , q̃221, . . .} E?
2 = Span{p̃2?1 , p̃2?2 , . . .},

and F?
2 = Span{q̃2?1 , q̃2?2 , . . .}, and decompose (M,G) into its restrictions to these

spaces. We may define P and Q as the unitary operators whose rows are given
by the basis vectors. That is, let P 1

=

P1
i,j=1

⌦
p̃1ij, .

↵
p̃1ij, Q1

=

P1
i,j=1

⌦
q̃1ij, .

↵
q̃1ij,

P 1?
=

P1
i=1

⌦
p̃1?i , .

↵
p̃1?i , Q1?

=

P1
i=1

⌦
q̃1?i , .

↵
q1?i , P 2

=

P1
i,j=1

⌦
p̃2ij, .

↵
p̃2ij , Q2

=

P1
i,j=1

⌦
q̃2ij, .

↵
q̃2ij, P 2?

=

P1
i=1

⌦
p̃2?i , .

↵
p̃2?i , and Q2?

=

P1
i=1

⌦
q̃2?i , .

↵
q2?i .

I claim that with respect to these bases, (M11, G11), has the desired properties.
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The proof of this fact follows by induction. Denote Pm =

Pm
i,j=1

⌦
p̃1ij, .

↵
p̃1ij and

Qm =

Pm
i,j=1

⌦
q̃1ij, .

↵
q̃1ij. To show (M11, G11) are upper-triangular with respect to this

basis, it suffices to show (I �Qs)MPs = (I �Qs)GPs = 0 for all s 2 N. It then also
follows that (I � Q1

)MP 1
= (I � Q1

)GP 1
= 0, and so the (2, 1), (3, 1) and (4, 1)

elements of M and G are indeed 0 as claimed. To see this, note that by definition
of a closed span, for any x 2 E1, for all � > 0, 9s such that kPsx � xk < �. Since
M and G are continuous, for any ✏ > 0 there exists � > 0 such that kzk < � implies
kMzk < ✏, kGzk < ✏, and so for any x 2 HX , 9s 2 N s.t. k(I � Q1

)MP 1xk =

k(I �Q1
)MPsxk+ k(I �Q1

)M(P 1 � Ps)xk < ✏ and similarly k(I �Q1
)GP 1xk < ✏.

Begin by showing that the first step of the induction chain holds. By construction
of the generalized Schur decomposition for the finite dimensional matrix pair, q̃111 =

q111 =

1

kGp̃111kGp̃111 and so (I � Q1)GP1 = 0 and likewise, since p̃111 satisfies Mp̃111 =

�1Gp̃111 = �1 kGp̃111k q̃111, (I � Q1)MP1 = 0. Next, for arbitrary index s = k ⇥ `

assume the inductive hypothesis (I � Qs�1)MPs�1 = (I � Qs�1)GPs�1 = 0. By the
Gram-Schmidt process, p̃1s = 1

k(I�P
s�1)p1

s

k(I � Ps�1)p1s. Since p1s is a generalized Schur
vector of a finite dimensional matrix pair,

q1s =

1

k(I �P`�1
j=1

⌦
q1k,j, .

↵
q1k,j)Gp1sk

(I �
`�1X

j=1

⌦
q1k,j, .

↵
q1k,j)Gp1s (⇤)

and

(I �
`�1X

j=1

⌦
q1k,j, .

↵
q1k,j)Mp1s = �k(I �

`�1X

j=1

⌦
q1k,j, .

↵
q1k,j)Gp1s (⇤⇤)

, or, in words, p1s is a generalized eigenvector of the matrix pair on the space orthogonal
to previous generalized Schur vectors within the block. Now consider (I �Qs)Gp̃1s =

1
k(I�P

s�1)p1
s

k(I �Qs)G(I �Ps�1)p1s =
1

k(I�P
s�1)p1

s

k(I �Qs)Gp1s by the inductive hypoth-
esis. By (⇤), Gp1s 2 span{q1k,1, . . . , q1s} ⇢ span{q̃11, . . . , q̃1s} so (I � Qs)Gp̃1s = 0, and
since by the inductive hypothesis (I � Qs)Gp̃1m = 0 for m < s, (I � Qs)GPs = 0.
Similarly, by (⇤⇤) and the inductive hypothesis, (I � Qs)Mp̃1s = 0, so it is also the
case that (I � Qs)MPs = 0. By induction, (I � Qs)MPs = (I � Qs)GPs = 0 for all
s 2 N.

To show that diagonals of (M11, G11) are the generalized eigenvalues, note that the
sth diagonal elements with respect to this basis are given by hMp̃1s, q̃

1
si and hGp̃1s, q̃

1
si.

Since p̃1s =

1
k(I�P

s�1)p1
s

k(I � Ps�1)p1s, q̃1s =

1
k(I�Q

s�1)q1
s

k(I � Qs�1)q1s , (I � Qs�1)M(I �

98



Ps�1) = (I � Qs�1)M by triangularity, and Qs�1 is idempotent and self-adjoint
since it is an orthogonal projection, hMp̃1s, q̃

1
si =

1
k(I�P

s�1)p1
s

k hMp1s, q̃
1
si, and simi-

larly hGp̃1s, q̃
1
si = 1

k(I�P
s�1)p1

s

k hGp1s, q̃
1
si. By the finite dimensional generalized Schur

decomposition, (⇤⇤) holds, and so hMp̃1s, q̃
1
si / hGp̃1s, q̃

1
si = �k, and so (M11, G11) has

the generalized eigenvalues along the diagonals as desired.
To demonstrate that the (3, 2) and (4, 2) blocks of (M,G) are equal to 0 is equiv-

alent to requiring that (I � [Q1, Q1?
])M [P 1, P 1?

] = (I � [Q1, Q1?
])G[P 1, P 1?

] =

0. Because ({p111, . . . , p11k1}, {p121, . . . , p12k2}, . . . , {p1?1 , p1?2 , . . .}, . . .) span Im ⇡1 and
({q111, . . . , q11k1}, {q121, . . . , q12k2}, . . . , {q1?1 , q1?2 , . . .}, . . .) span Im ⇡2, we have by A.1
that Im M [P 1, P 1?

] ⇢ Im ⇡2 = Im [Q1, Q1?
] and Im G[P 1, P 1?

] ⇢ Im ⇡2 = Im [Q1, Q1?
]

so M [P 1, P 1?
] = [Q1, Q1?

]M [P 1, P 1?
] and G[P 1, P 1?

] = [Q1, Q1?
]G[P 1, P 1?

] so or-
thogonality holds.

The proof of the upper-triangular structure of (M22, G22) proceeds similarly to
the above, by induction. Denote P 2

m =

Pm
i,j=1

⌦
p̃2ij, .

↵
p̃2ij and Q2

m =

Pm
i,j=1

⌦
q̃2ij, .

↵
q̃2ij.

Further, denote Qu
m = [Q1, Q1?, Q2

m] the projection onto the set of basis vectors of HY

up to q̃2m and similarly P u
m = [P 1, P 1?, P 2

m]. To show (A22, B22) are upper-triangular
with respect to this basis, it suffices to show (I�Qu

s )MP 2
s = (I�Qu

s )GP 2
s = 0 for all

s 2 N. It then also follows by analogous ��✏ argument that (I�[Q1, Q1?, Q2
])MP 2

=

(I � [Q1, Q1?, Q2
])GP 2

= 0, and so the (4, 3) elements of M and G are 0 as claimed.
The proof is essentially identical to that for (M11, G11) except that all vectors are
orthogonalized with respect to previous basis vectors, and the generalized Schur form
of each matrix pair constructs q2ij from M instead of G, as on Ker ⇡1 the spectrum
excludes 0 and so M2 is guaranteed to be invertible while G2 is not.

Begin by showing the first step of the induction for (M22, G22). By construc-
tion of the generalized Schur decomposition for the finite dimensional matrix pair,
q̃211 = (I � [Q1, Q1?

])q211 =

(I�[Q1,Q1?])

kMp211k Mp211 while p̃211 = (I � [P 1, P 1?
])p211. As

shown above, (I � [Q1, Q1?
])M [P 1, P 1?

] = 0 and so q̃211 =

(I�[Q1,Q1?])

kMp211k Mp̃211 and

so (I � Qu
1)MP u

1 = 0. Likewise, since p̃211 satisfies (I � [Q1, Q1?
])Gp211 =

1
�
(I �

[Q1, Q1?
])Mp211 =

1
�
kMp211k q̃211, (I�Qu

1)BP u
1 = 0 also. This shows that the first step

of the induction holds: the continuation proceeds as for (M11, G11) except switching
the order of M and G. Similarly, the presence of the eigenvalues along the diagonals
is shown in a completely analogous manner.

It remains to show that (M?
11, G

?
11) satisfies �(M?

11, G
?
11) ⇢ {0}. In this, I fol-

low Gohberg et al. (1990, Lemma II.3.4) closely. By construction, (M?
11z,G

?
11z) =
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(Q?
1 M1z,Q?

1 G1z) for all z 2 E?
1 . By assumption, G is a bounded operator, so

G1 must be also and so G�1
1 Q?

1 G1 must be as well. Since the compact operators
are a closed ideal within the algebra of bounded operators on a Banach space (see,
e.g. (Carl & Stephani, 1990)) and G�1

1 M1 is compact by assumption, G�1
1 Q?

1 M1 =

G�1
1 Q?

1 G1G
�1
1 M1 is compact also, as is ⌦

?
1 := P?

1 G�1
1 Q?

1 M1P?
1 , its restriction to

E?
1 . Suppose for contradiction that µ is a nonzero element of �(M?

11, G
?
11). Then

by reasoning entirely analogous to 1, �(M?
11, G

?
11) = �(⌦?

1 ) and so by compactness
µ is an isolated point in the spectrum of ⌦?

1 . Further, ⌦?⇤
1 must have µ̄ 2 �(⌦?⇤

1 )

as a nonzero point in the spectrum, and so by compactness, it must be an isolated
point in the spectrum associated with (at least one) nonzero eigenvector, which we
will call x0 2 E?

1 . The upper triangular decomposition of (M1, G1) may be used to
show ⌦

?⇤
1 = P?

1 (G�1
1 M1)

⇤P?
1 . To see this, note that multiplication of the the upper

triangular decomposition of M1 by the inverse of the upper triangular decomposition
of G1 yields

(G�1
1 M1)

⇤
=

 
G�1

11 M11 �G�1
11 G

off
11 G?�1

11 M off
11

0 G?�1
11 M?

11

!⇤

=

 
(G�1

11 M11)
⇤

0

(�G�1
11 G

off
11 G?�1

11 M off
11 )

⇤
⌦

?⇤
1

!

and so ⌦

?⇤
1 = P?

1 (G�1
1 M1)

⇤P?
1 as claimed. As a result, x0 is also an eigenvector

of compact operator (G�1
1 M1)

⇤ associated with eigenvalue µ̄, and so x0 2 E?
1 \

Im P
(G�1

1 M1)⇤

{µ̄} .

However, we know also by F.2 that Im P
G�1

1 M1

{µ} = Im P (M1,G1)
{µ} ⇢ E1, and by

orthogonality of the decompositions, E?
1 is orthogonal to Im P

G�1
1 M1

{µ} , and so must be

a subset of Ker (PG�1
1 M1

{µ} )

⇤. Since this is an isolated eigenvalue of an operator on a

Hilbert space, Gohberg et al. (1990, Prop I.2.5) gives that (P
G�1

1 M1

{µ} )

⇤
= P

(G�1
1 M1)⇤

{µ̄} ,

and so E?
1 ⇢ Ker P

(G�1
1 M1)⇤

{µ̄} . This contradicts the previous assertion that there is a

nonzero element x0 in E?
1 \ Im P

(G�1
1 M1)⇤

{µ̄} and so the original assertion that there is
some µ 6= 0 in �(M?

11, G
?
11).

The proof that (M?
22, G

?
22) satisfies �(M?

22, G
?
22) ⇢ {1} is essentially similar to the

above, except using ((I� [Q1, Q1?
])M(I� [P 1, P 1?

]), (I� [Q1, Q1?
])G(I� [P 1, P 1?

]))

in place of (M1, G1) and reversing the order of M and G.
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F.3 Appendix C Proofs

Proof. of Lemma (1). Suppose h(x, z) := h(x, �) + �z is a measurable function from
(Bx ⇥ Bz,⌃x ⌦ ⌃z), the product space of Bx ⇥ Bz equipped with a product sigma
field, to (Bx,⌃x). We want conditions on the space, the function, and the sigma fields
such that it induces a measurable stochastic process on the product space of Bx.
We may assume z is drawn independently of x according to measure µz on (Bz,⌃z),
and may ask for the initial distribution of x to be given by µx. For each x, we can
define the pushforward measure on (Bx,⌃x) by µx0

x (f(x
0
)) := µz

(f(h(x, �) + �z) for
any f 2M+

(Bx,⌃x, ¯R,B(

¯R)) nonnegative measurable functions from x to the real
line equipped with the Borel sigma field. If the family (µx0

x )x of measures satisfies
x ! µx0

x (A) is a measurable function from (Bx,⌃x) ! (

¯R,B(

¯R)) for any A 2 ⌃x,
then this is a probability kernel and by, e.g, the Ionescu Tulcea extension theorem,
the family induces a measurable stochastic process for xt on the countable product
space ⌦1

t=1(Bx,⌃x).
To show measurability of the family of measures (µx0

x )x, consider a �-class argu-
ment. The measure µz maps the class of measurable rectangles {x 2 A1, z 2 A2}
for A1 2 ⌃x, A2 2 ⌃z to (nonnegative multiples of) indicators of sets ⌃x, which
are therefore measurable. The class of measurable rectangles generates the prod-
uct sigma field ⌃x ⌦ ⌃z and is stable under pairwise intersections. The class of
bounded nonnegative functions f(x, z) 2M+

(Bx ⇥ Bz,⌃x ⌦ ⌃z, ¯R,B(

¯R)) such that
µzf(x, z) is (Bx,⌃x) measurable can be shown to form a �-cone (Pollard, 2002, 2.11
Def. <43>) and so by these facts (Pollard, 2002, 2.11 Lemma <44>), µz maps
M+

(Bx ⇥ Bz,⌃x ⌦ ⌃z, ¯R,B(

¯R)) to M+
(Bx,⌃x, ¯R,B(

¯R)). In particular, let h(x, z)

be Bx ⇥ Bz,⌃x ⌦⌃z ! Bx,⌃x measurable, then µz
(f(h(x, z)) is (Bx,⌃x) measurable

for any f 2M+
(Bx,⌃x, ¯R,B(

¯R)) and in particular, x! µx0
x (A) is a measurable func-

tion from (Bx,⌃x) ! (

¯R,B(

¯R)) for any A 2 ⌃x. As a result, (µx0
x )x is a probability

kernel.
To construct a measurable stochastic process, consider the i.i.d. sequence {zt}1t=0

such that zt each have identical marginal measure µz
t and, beginning with initial

measure µx, construct the sequence of probability kernels on ⌦1
t=1(Bx,⌃x) by iter-

ating the identical kernels defined by µx0
xt(f(x

0
)) := µz

t (f(h(x, z)). This generates a
sequence x0 ⇠ µx

0 , xt = h(xt�1, zt). By the Ionescu Tulcea extension theorem, the
sequence of kernels induces a measurable stochastic process on the countable product
space ⌦1

t=1(Bx,⌃x) with finite dimensional distributions generated by the iterated
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probability kernels. Note that the only assumptions made on (Bx,⌃x), (Bz,⌃z) and
h(x, z) are that h(x, z) is jointly measurable from the product sigma field over x and
z to the sigma field over x. In particular, because the probability kernel was con-
structed explicitly, no topological assumptions needed to be made on the spaces or
sigma fields, as are usually required to invoke the Kolmogorov extension theorem.
This permits, among other constructions, the use of nonseparable function spaces or
non-Borel sigma fields, which may alleviate some difficulties when working in infinite
dimensional space.

By measurability of g(x, �) and F , the measurability of the probability ker-
nels defining the conditional distribution of the random variables yt = g(xt, �) and
F (xt, g(xt, �), h(xt, �) + �zt+1, g(h(xt, �) + �zt+1, �) given x and from there the cor-
responding stochastic processes can be established in an analogous fashion, ensur-
ing that (xt, yt) is product measurable and EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) +

�⌘z0, �), �) coincides with the conditional expectation of F (xt, g(xt, �), h(xt, �) +

�⌘zt+1, g(h(xt, �) + �⌘zt+1, �), �) at time t given xt = x, as claimed.

Proof. of Lemma 6. Unitarity of U provides the following facts: since U⇤
= U�1, we

have U⇤U = I. Decomposing U into U11, U12, U21, and U22 obtain
"

U⇤
11U11 + U⇤

21U21 U⇤
11U12 + U⇤

21U22

U⇤
12U11 + U⇤

22U21 U⇤
12U12 + U⇤

22U22

#
= I =

"
Ix 0

0 Iy

#

Where Ix = 'X⇤'X and Iy = 'Y ⇤'Y are the identity operators on Hx and Hy

respectively. To see this more formally, consider U⇤
11U12 + U⇤

21U22. It can be written
as

'X⇤U⇤
1U1'

Y
+ 'X⇤U⇤

2U2'
Y
= 'X⇤

(U⇤
1U1 + U⇤

2U2)'
Y

= 'X⇤'Y
= 0

Equivalent calculations describe the other identities.
Using these identities we can express
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(U11 + U12gx)
⇤
(U11 + U12gx) = U⇤

11U11 + U⇤
11U12gx + g⇤xU

⇤
12U11 + g⇤xU

⇤
12U12gx

= Ix � U⇤
21U21 � U⇤

21U22gx + g⇤xU
⇤
22U21 + g⇤x(Iy � U⇤

22U22)gx

= Ix � U⇤
21U21 + U⇤

21U22U
⇤
22(U22U

⇤
22)

�1U21

+U⇤
21(U22U

⇤
22)

�1⇤U22U
⇤
22U21 + g⇤xIygx � g⇤xU

⇤
22U22gx

= Ix � U⇤
21U21 + U⇤

21U21 + U⇤
21U21 + g⇤xIygx � U⇤

21U21

= Ix + g⇤xIygx

= Ix + gx
⇤gx

As a result, post-multiplying by (U11+U12gx)�1 and inverting (Ix+gx⇤gx), obtain

(U11 + U12gx)
�1

= (Ix + gx
⇤gx)�1

(U11 + U12gx)
⇤

F.4 Appendix D Proofs

Proposition. Derivation of ˆd!
d� �

: ˆd!
d� �

= (1 � µH(�)) µH(�)�H(�)2

��µH(�)�(��1)H(�)2 +

µ
��1H(�),

with H(�) := (��1)2

(��1)2+⌧�2�2

Proof. d!
d�

is shown in Equation (D.5) to equal dw
d�
� µ(dT

dw
dw
d�

+

dT
d�
) which is a com-

position of convolution operators and their inverses and so can also be expressed as
multiplication by the Fourier transform of some function. To construct the Fourier
transform of the function, simplify the integrals in equations (D.1),(D.2), (D.3), and
(D.4) and denote

H(�) =
(� � 1)

2

(� � 1)

2
+ ⌧�2�2

the Fourier transform of the Laplace distribution in the convolution operator

⌧(1� �)
2

Z

G

[.]e⌧(1��)|x�z|dz.

This yields the formulas ˆdw
dT

=

��1
�
H, ˆdw

dY
=

1
�
H, ˆdT

d�
=

1
1��

H, dT
dw

= H. Substituting
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into the expressions for partial derivatives, obtain ˆdw
d�

=

�µ

�

H+ 1
�

H2

1�µ

�

H���1
�

H2 and

ˆd!

d� �
= (1� µH(�))

µH(�)�H(�)2

� � µH(�)� (� � 1)H(�)2
+

µ

� � 1

H(�). (F.3)

This is almost the same as Krugman (1996)’s equation (A.44) for this term, but differs
slightly due to what appears to be an algebra error in the text.

Proof. of Lemma (7). The proof applies the machinery and notation of Stewart
(1973). While rates of convergence are obtained, no attempt is made to ensure that
these are optimal. First, note that �� = k(B�, A�)� (Bi

I , A
i
I)kF ! 0 by assumption,

and so all submatrices also converge at least as rapidly in Frobenius norm. Next note
that (Bi

I , A
i
I) has generalized Schur decomposition

 
Q⇤1

"
S1
11 S1

22

0 S1
22

#"
U1
11 U1

12

U1
21 U1

22

#
, Q⇤1

"
T1
11 T1

22

0 T1
22

#"
U1
11 U1

12

U1
21 U1

22

#!

where (S1, T1
) =

0

B@

2

64
1 0 0

0

p
2 0

0 0 0

3

75 ,

2

64
0 0 0

0 0 1/
p
2

0 0 1/
p
2

3

75

1

CA and U1
=

0

B@
�1 0 0

0 �1 0

0 0 1

1

CA.

Applying standard formulas for policy functions, obtain ĝ1 = �U1�
22 U1

21 = (0, 0)

and
ˆh1 = (I2 + ĝ⇤1ĝ1)

�1
((

I2

ĝ1
)

⇤U1⇤
1 S1�1

11 T1
11U

1
1 (

I2

ĝ1
)) =

 
0 0

0 0

!

As generalized eigenvalues corresponding to the stable subspace are equal to 0 and
the generalized eigenvalue corresponding to the unstable subspace is 1, the measure
of subspace separation defined in Stewart (1973), which ensures that Schur subspaces
are numerically stable, is given by � = dif(S1

11 , T
1
11 , S

1
22 , T

1
22 ) > 0. As a result, by

Stewart (1973), Theorem 5.7 and 5.3,
���sin⇥(U1⇤

1 , U�⇤
1 )

���
F
 2

�
�

��2�
�

for �� small

enough, and similarly for U1
2 , where ⇥(U1⇤

1 , U�⇤
1 ) is the matrix of principal angles

between the span of U1⇤
1 and U�⇤

1 . While this does not imply that
���U1⇤

1 � U�⇤
1

���
F
!

0, as the span does not uniquely define the basis, it does imply, because U�⇤
2 and U1⇤

2
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have a one-dimensional span and norm 1, that

���U�⇤
2 � U1⇤

2

���
2

F
= 2� 2

���cos⇥(U�⇤
2 , U1⇤

2 )

���

= 2� 2

q
1� sin

2
⇥(U�⇤

2 , U1⇤
2 )

 2� 2

s

1� (

2��
� � 2��

)

2
= O(��)! 0

Since U1
22 = 1 is invertible, the policy function ĝ� = �U��

22 U�
21 therefore satisfies the

bound kĝ� � ĝ1k2F  O(��)! 0 , as claimed.
Further, it is possible to show that for each �, there exists a unitary (2⇥2) transfor-

mation R� of U1⇤
1 such that

���U1⇤
1 R� � U�

1

���
F
! 0. Applying the definition of princi-

pal angles, for each � there exist unitary matrices R1
� = [R1

�1, R
1
�2] and R2

� = [R2
�1, R

2
�2]

such that [cos⇥(U1⇤
1 , U�⇤

1 )]11 =

D
U1⇤
1 R1

�1, U
�⇤
1 R2

�1

E
and [cos⇥(U1⇤

1 , U�⇤
1 )]22 =

D
U1⇤
1 R1

�2, U
�⇤
1 R2

�2

E
,

so
���U1⇤

1 R� � U�
1

���
2

F
:=

���U1⇤
1 R1

�R
2⇤
� � U�

1

���
2

F

=

���U1⇤
1 R1

� � U�
1 R

2
�

���
2

F

= 2(1� [cos⇥(U1⇤
1 , U�⇤

1 )]11 + 1� [cos⇥(U1⇤
1 , U�⇤

1 )]22)

 4� 4

s

1� (

2��
� � 2��

)

2
= O(��)! 0.

Equivalent results show that for a different unitary transform RQ
� ,
���RQ

�Q
1
1 � U�

1

���
2

F
=

O(��). Combining these results and applying the triangle inequality,
���S�

11 � S1(�)
11

���
F
:=

���S�
11 �RQ

�Q
1
1 A1U1⇤

1 R�

���
F
 O(�

1
2
� )

and ���T �
11 � T1(�)

11

���
F
:=

���T �
11 �RQ

�Q
1
1 B1U1⇤

1 R�

���
F
 O(�

1
2
� )

also, gives convergence of the generalized Schur components of the finite order ma-
trices along a triangular array to unitary transformations (S1(�)

11 , T1(�)
11 ) of the gen-

eralized Schur components of the limit pencil. Noting that unitary transformations
leave singular values unaffected and that S1

11 is invertible, S�
11 is also asymptotically
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invertible, so by Weyl’s inequality
���S��1

11 � S1(�)�1
11

���
F

���S��1

11

���
op

���S1(�)�1
11

���
op

���S�
11 � S1(�)

11

���
F
 O(�

1
2
� ).

Using the unitarity of R� and applying the triangle inequality, one can see that

���U�⇤
1 S��1

11 T �
11U

�
1 � U1⇤

1 S1�1
11 T1

11U
1
1

���
F
=

���U�⇤
1 S��1

11 T �
11U

�
1 � U1⇤

1 R�S
1(�)�1
11 T1(�)

11 R⇤
�U

1
1

���
F

 O(�
1
2
� ),

and so the fact that Schur vectors do not converge does not affect the convergence
of the policy function, which is invariant to unitary transformations of these vectors.
Finally, defining

ˆh� = (I2 + ĝ⇤�ĝ�)
�1
((

I2

ĝ�
)

⇤U�⇤
1 S��1

11 T �
11U

�
1 (

I2

ĝ�
))

the above results and the triangle inequality imply that
���ˆh� � ˆh1

���
F
 O(�

1
2
� ).

To show compactness, it suffices to show that the singular values converge to 0.
As g[.] and h[.] are block-diagonal, it suffices to show that the operator norm of each
block converges to 0. As the operator norm is bounded by the Frobenius norm, each
block has operator norm at most O(�

1
2
� )! 0 and so compactness holds.

(ii) To show that an h[.] is Hilbert Schmidt, Tr(h⇤h) < 1, it suffices to show
that the sum of squared singular values converges. As the sum of squared singular
values for each block is equal to the square of its Frobenius norm, which is O(��) for
large |�|, convergence holds so long as

P1
�=n �� < 1 for some finite n. Superlinear

convergence �� = O(|�|�(1+✏)
) for some ✏ > 0 is sufficient for this sum to be finite.

Proof. of Lemma (8). The first statements follow by the triangle inequality and the
assumed rates. For the latter,

���(IK
s

+

ˆKs)
�1

ˆKt � (I +Ks)
�1Kt

��� 
��� ˆKt �Kt

���
��
(I +Ks)

�1
��
+

���((IK
s

+

ˆKs)
�1 � (I +Ks)

�1
)

ˆKt

���
 (a) + (b)
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(a)  C⌘K
s

,K
t

! 0

by assumption.

(b)  ��
(I +Ks)

�1
��
���(I � (I +Ks)(IK

s

+

ˆKs)
�1
)

ˆKt

���

=

��
(I +Ks)

�1
��
���(IK

s

� (IK
s

+

ˆKs)(IK
s

+

ˆKs)
�1

+ (IK
s

+

ˆKs � (I +Ks))(IK
s

+

ˆKs)
�1
)

ˆKt

���

=

��
(I +Ks)

�1
��
���(0 + (IK

s

� I + (

ˆKs �Ks))(IK
s

+

ˆKs)
�1
)

ˆKt

���

=

��
(I +Ks)

�1
��
���( ˆKs �Ks)(IK

s

+

ˆKs)
�1

ˆKt

���

 ��
(I +Ks)

�1
��
��� ˆKs �Ks

���
���(IK

s

+

ˆKs)
�1
���
��� ˆKt

���
 C⌘K

s

! 0

where we have used the orthogonality of projections and that
���(IK

s

+

ˆKs)
�1
��� is

bounded for large enough Ks because k(I +Ks)
�1k is, with result that

���(IK
s

+

ˆKs)
�1

ˆKt � (I +Ks)
�1Kt

��� 
C(⌘K

s

,K
t

+ ⌘K
s

)

By an essentially identical argument, we similarly have
���(IK

s

+

˜Ks)
�1

˜Kt � (IK
s

+

ˆKs)
�1

ˆKt

���  C(⇣K
s,

K
t

+ ⇣K
s

)

and so
���(IK

s

+

˜Ks)
�1

˜Kt � (I +Ks)
�1Kt

���  C(⌘K
s

,K
t

+ ⌘K
s

+ ⇣K
s

,K
t

+ ⇣K
s

)

F.5 Appendix E Proofs

Proof. of Theorem 5. Define the space of potential sequences of (aggregate) states
`1(H1) as the space of sequences of deviations {xt, yt}1t=0 such that {xt + x⇤, yt +

y⇤}1t=0 2 H1 = Hx⇥Hy from time 0 to1 endowed with the norm k{xt, yt}1t=0k`1(H1) =P1
t=0 k(xt�x⇤, yt� y⇤)kH1 having finite norm. Define also `1y0(H1) as the subspace of

`1(H1) consisting of sequences {y0, {xt, yt}1t=1}, that is, excluding x0, endowed with
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the relative topology. These are Banach spaces since each element of a sequence is a
member of a Banach space and the space of norm summable sequences is complete.
We define an equilibrium as a sequence {xt, yt}1t=0 2 `1(H1) satisfying F (xt + x⇤, yt +

y⇤, xt+1 + x⇤, yt+1 + y⇤, 0) = 0 8t � 0 and endow the space of norm-summable se-
quences in H2 with the `1(H2) norm k{zt}1t=0k`1(H2) =

P1
t=0 kztkH2 , making it also a

Banach space, and the operator F1
({xt, yt}1t=0) = {F (xt+x⇤, yt+y⇤, xt+1+x⇤, yt+1+

y⇤, 0)}1t=0 a map from `1(H1) ! `1(H2) (where boundedness follows if F (., ., ., ., 0) is
bounded from H1 ⇥ H1 endowed with norm kx, ykH1 + kx0, y0kH1 is bounded). By
assumption {xt, yt}1t=0 = {0, 0}1t=0 satisfies F1

({0, 0}1t=0) = 0. F1 is continuous
on an `1(H1) neighborhood of {0, 0}1t=0 since for any pair of sequences ({xt, yt}1t=0)i,
({xt, yt}1t=0)j, we have kF1

(({xt, yt}1t=0)i)�F1
(({xt, yt}1t=0)j)k`1(H2) =

P1
t=0 kF (xi

t +

x⇤, yit+y⇤, xi
t+1+x⇤, yit+1+y⇤, 0)�F (xj

t+x⇤, yjt +y⇤, xj
t+1+x⇤, yjt+1+y⇤, 0)kH2 which is

bounded by the `1(H1) norm of the difference in arguments times the modulus of uni-
form continuity of F (xt+x⇤, yt+y⇤, xt+1+x⇤, yt+1+y⇤, 0), which is finite in a bounded
neighborhood of 0, 0, 0, 0 due to continuity of the Fréchet derivatives of F . Split the
arguments of F1 into (x0, s) 2 Hx ⇥ `1y0(H1) and define @F1

@x0
and @F1

@s
as the partial

Fréchet derivatives of F1 with respect to x0 and s, respectively. These exist and are
continuous at {x⇤, y⇤}1t=0. This is easily seen for @F1

@x0
= {Fx(x⇤, y⇤, x⇤, y⇤), 0, 0, 0, ...}

since Fx is continuous by assumption. For s, this is a little less straightforward: its
rows are given by

[

@F1
({xt, yt}1t=0)

@s
]0 = [Fy(x0 + x⇤, y0 + y⇤, x1 + x⇤, y1 + y⇤)

Fx0
(x0 + x⇤, y0 + y⇤, x1 + x⇤, y1 + y⇤) Fy0(x0 + x⇤, y0 + y⇤, x1 + x⇤, y1 + y⇤) 0 0 . . . ]

[

@F1
({xt, yt}1t=0)

@s
]1 = [

0 Fx(x1 + x⇤, y1 + y⇤, x2 + x⇤, y2 + y⇤)

Fy(x1 + x⇤, y1 + y⇤, x2 + x⇤, y2 + y⇤) Fx0
(x1 + x⇤, y1 + y⇤, x2 + x⇤, y2 + y⇤)

Fy0(x1 + x⇤, y1, x2 + x⇤, y2) . . . ]
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[

@F1
({xt, yt}1t=0)

@s
]2 = [

0 0 0 Fx(x2 + x⇤, y2 + y⇤, x3 + x⇤, y3 + y⇤)

Fy(x2 + x⇤, y2y⇤, x3 + x⇤, y3 + y⇤) Fx0
(x3 + x⇤, y3 + y⇤, x4 + x⇤, y4 + y⇤)

Fy0(x3 + x⇤, y3, x4 + x⇤, y4) . . .]

etc.
It is a linear operator mapping sequences s = {y0, x1, y1, x2, y2, . . .} 2 `1y0(H1) to

`1(H2), as each block is bounded and each row consists of a finite set of blocks.
Continuity of this operator (with respect to operator norm on the space L(`1y0(H1)!
`1(H2)) is given by bounding

sup

ksk
`

1
y0

(H1)
=1
k[@F

1
({xt, yt}1t=0)i

@s
� @F1

({xt, yt}1t=0)j

@s
]sk`1(H2)

which, if ({xt, yt}1t=0)i and ({xt, yt}1t=0)j are in the neighborhood over which the
Fréchet derivatives are uniformly continuous, is less than the sum of the moduli
of uniform continuity of Fx, Fy, Fx0 , and Fy0 (which is by assumption finite) times
the `1(H1) distance between the sequences. This inequality holds since for any row
of @F1

@s
, only the set of elements of the sequence corresponding to times t and t + 1

enters into the value of the operator.
Finally, to apply the implicit function theorem to F1 to solve for s as a function

of x0, we must show that @F1({0,0}1
t=0)

@s
is invertible. To do this, we show that it is

surjective and injective. We prove that it is surjective constructively, by constructing,
for any {ai}1i=0 2 `1(H2) an element s 2 `1y0(H1) such that @F1({0,0}1

t=0)
@s

s = {ai}1i=0.
We may construct s recursively, using gX and hX as defined in the theorem to solve for
the values of y, x0, and y0 consistent with values of x and y at previous times. To find
the starting value, we solve a0 = Fyy0 +Fx0x1 +Fy0y1 by finding y0 and x1 consistent
with a0 under the assumption that y1 may be constructed by the law of motion given
by gX , permitting all subsequent time periods to be solved for recursively. That is,
we find y0, x1 solving a0 = Fyy0 + Fx0x1 + Fy0gXx1 = M(y0, x1). By invertibility
of M , we may define (y0, x1) = M�1a0 and choose y1 = gXx1 so that the first row
of @F1({0,0}1

t=0)
@s

[{y0, {xt, yt}1t=1}] equals a0 by construction. To ensure that the next
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row holds, with x1 and y1 = gXx1 given, we must solve a1 = [ Fx Fy ][

x1

gXx1

] +

[ Fx0 Fy0 ][
x2

y2
]. This equation has ‘fundamental solution’ for a2 = 0 given by the

recursive update rule x2 = hXx1 and y2 = gXhXx1. To find a general solution,

we may add to this values solving a1 = [ Fx0 Fy0 ][
x̃2

gX x̃2

]. Applying the Schur

decomposition, this equals a1 = Q⇤
[

S11 S12

0 S22

][

(U11 + U12gX)x̃2

(U21 + U22gX)x̃2

] = Q⇤
1S11(U11 +

U12gX)x̃2 using that U21+U22gX = 0 by construction. Q⇤
1 is invertible by unitarity of

Q, S11 is invertible by �-regularity of the derivative pair, and (U11+U12gX) is invertible
by Lemma 1 in the main text, so x̃2 = (U11 + U12gX)�1S�1

11 Q1a1 and x2 = hXx1 + x̃2

and y2 = gXhXx1 + gX x̃2. We may then iterate these forward to find a fundamental
solution to the next row, and then add x̃3 = (U11+U12gX)�1S�1

11 Q1a2 and gX x̃3 to the
fundamental solution to find x3 and y3. This process can be continued indefinitely,
resulting in the solution s({at}1t=0) = {y0,{xt, yt}1t=1} given by (y0, x1) = M�1a0,
xk = hk�1

X x1 +
Pk�1

j=1 h
k�1�j
X (U11 + U12gX)�1S�1

11 Q1aj for all k > 1 and yk = gXxk for
all k > 0. We may demonstrate that s({at}1t=0) 2 `1y0(H1) since

1X

k=1

kxkkH
X

 k(M�1a0)k
1X

k=0

khk
Xk+k(U11+U12gX)

�1S�1
11 Q1k(

1X

j=0

khj
Xk)

1X

k=1

kakk <1

since khk
Xk must, since its eigenvalues are bounded in modulus by 1, eventually be

of norm less than one, and so
P1

j=1 khj
Xk is a geometric series with a finite bound.

Similarly,
P1

k=0 kykkHX

 ky0k + kgXk
P1

k=1 kxkkH
X

< 1. So, we have shown that
@F1({x⇤,y⇤}1

t=0)
@s

is surjective map in L(`1y0(H1)! `1(H2)).
To show invertibility, by the bounded inverse theorem it is sufficient to show that

this map is unique. We prove this by contradiction. First, note that completeness
of U22 and the restriction of the domain of @F1({0,0}1

t=0)
@s

to `1y0(H1) rule out other
‘recursive’ solutions taking the same form as above but for different generalized Schur
decompositions. First, completeness ensures a unique solution to U21 + U22gX =

0. Further, for any generalized Schur decomposition generated by Cauchy curve �

generating a Riesz projector which projects onto a subspace other than that generated
by � equal to the complex unit circle, one of two issues may occur. One possibility
is that there exists a spectral subspace corresponding to an element of the spectrum
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outside of the unit circle, in which case T11 has an element of its spectrum with
modulus greater than one, and so the sequence {xt}1t=0 defined by x0 given, xt+1 =

hXxt does not converge to 0 for each value of x0, by Gohberg et al. (1990, Theorem
IV.3.1) and so a fortiori is not in `1y0(H1). The other possibility is that no elements of
the spectrum from outside the unit circle are brought inside �, but it shrinks so that
some spectral subspace corresponding to element of the spectrum with modulus less
than one, call it M, is brought outside of �, in which case, U22 which was an invertible
linear operator from Hy to H12 must now have range space H12 �M and the same
domain, so it cannot be invertible. The case where an element of the spectrum has
modulus exactly one is ruled out by assumption. So, only one solution of the posited
recursive form exists. Next we must show that no solution other than the recursive
one exists.

To show @F1
ds

is injective, simply show that @F1
ds

s = 0 implies s = {y0, {xt, yt}1t=1} =

0. Suppose not. Then, there is some t such that either xt 6= 0 or yt 6= 0. Consider
the first such time t, and suppose that t � 1. Then Fx0xt + Fy0yt = 0 imposes

"
S11(U11xt + U12yt) + S12(U21xt + U22yt)

S22(U21xt + U22yt)

#
=

"
0

0

#

If yt = gXxt, then the second row cancels and xt = 0. Instead, it must be that
(U21xt + U22yt) 2 Ker(S22), where this null space is potentially nontrivial. If S22

is complete, yt = gXxt, the second row cancels, and xt = yt = 0. If it is not,
there may be some non-zero zt 2 Null(S22) such that U21xt + U22yt = zt, and so
yt = U�1

22 U21xt + U�1
22 zt = gXxt + U�1

22 zt, and, plugging this into the first row, obtain
xt = (U11 + U12gX)�1

[U11U
�1
22 + S�1

11 S12]zt, which we write as xt = mZzt and so the
value of xt, yt must be of this form. We may then consider what this implies for
xt+1, yt+1. We then have Fxxt + Fyyt + Fx0xt+1 + Fy0yt+1 = 0 imposes

[

T11 T12

0 T22

]

"
((U11 + U12gX)mZ + U12U

�1
22 )zt

zt

#
= [

S11 S12

0 S22

]

"
U11xt+1 + U12yt+1

U21xt+1 + U22yt+1

#
.

Values of (U21xt+1 + U22yt+1) solving the second equation T22zt = S22(U21xt+1 +

U22yt+1) exist so long as the range space of S22 contains T22zt, in which case mul-
tiple solutions exist, given by a minimum norm solution S⇤

22(S22S⇤
22)

�1T22zt plus
some element of the null space of S22, which we may call ✏t+1, and so for some
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✏t+1 2 Ker(S22) zt+1 = S⇤
22(S22S⇤

22)
�1T22zt + ✏t+1 is a solution, and so we have

yt+1 = gXxt+1 + U�1
22 zt+1. We may then solve the first row for xt+1 to obtain

xt+1 = mZzt+1+(hXmZ+(U11+U12gX)�1S�1
11 T11U12U

�1
22 +T12)zt. Repeating this pro-

cess indefinitely, yt+k = gXxt+k +U�1
22 zt+k where zt+k = S⇤

22(S22S⇤
22)

�1T22zt+k�1+ ✏t+k

for some ✏t+k 2 Ker(S22), and xt+k is given by mZzt+k plus terms in zt+i for i from 0

to k�1. We therefore have a sequence which at all t has leading term defined by zt+k,
which satisfies T�1

22 S22zt+k = zt+k�1 for all k � 1. By construction of the generalized
Schur decomposition, (T22, S22) has spectrum strictly bounded outside the unit circle,
and so the series T�1

22 S22zt+k = zt+k�1 declines exponentially fast toward zero when
run backwards in time, and so since zt 6= 0, this means that the series must grow expo-
nentially in norm over time. As a result, this conjectured solution is not in `1y0(H1). It
now suffices to rule out the case where the first nonzero element is y0. If this is the case,
the first row requires y1 = gXx1+U�1

22 z1 for z1 = S⇤
22(S22S⇤

22)
�1T22y0+✏1, ✏1 2 Ker(S22)

and x1 = (U11 + U12gX)�1
[S�1

11 (T11U12 + T12U22)T
�1
22 S22 � S�1

11 S12 � U12U
�1
22 ]z1, and

so we have the same form as before, and so again this results in an explosive series.
So, the kernel of @F1

ds
on `1y0(H1) consists only of 0, and so @F1

ds
has a unique linear

inverse, which is bounded so long as F�1
X is.

Combining these results, the implicit function theorem on Banach spaces applies,
and there exists a neighborhood of x0 = 0 around which there exists for every x0 in
this neighborhood a sequence s(x0) = {y0(x0), {xt(x0), yt(x0)}1t=1} such that x0, s(x0)

satisfy the equilibrium conditions for all t. Further, this function is continuous and
differentiable, with inverse given by �(@F1

ds
)

�1 @F1
dx0

. To characterize the result of
applying (

@F1
ds

)

�1 to @F1
dx0

= {Fx, 0, 0, 0, . . .}, we may note that M�1
(�Fx) is given by

the values of (y0, x1) solving Fx + Fyy0 + Fx0x1 + Fy0gXx1 = 0, which, by generalized
Schur decomposability and the invertibility of U22, is solved uniquely by the operators
y0 = gX , x1 = hX . Applying this and the formula for subsequent values of xt and yt,
we obtain the recursive form @x

k

(x0)
@x0

= hk
X for all k � 1 and @y

k

(x0)
@x0

= gXhk
X for all

k � 0, as claimed.
The above result showed that a local equilibrium exists for all starting values local

to the steady state, and its derivatives follow the given recursive forms. It remains
to show that the equilibrium itself is recursive. To see this, note that the implicit
function theorem implies that the function s(x0) is unique. Further, we have that the
function given by the restriction of F1 to t � 1, F1

t�1(x1, {y1, {xt, yt}1t=2}) = {F (xt +

x⇤, yt+y⇤, xt+1+x⇤, yt+1+y⇤, 0)}1t=1, has the property that the pair solving x0, s(x0) to
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F1
(x0, s) = 0 has restriction to t � 1 x1(x0), {y1(x0), {xt(x0), yt(x0)}1t=2} which is a

solution to F1
t�1(x1, {y1, {xt, yt}1t=2}) = 0. But since F1

t�1 is identical to F1
= {F (xt+

x⇤, yt+y⇤, xt+1+x⇤, yt+1+y⇤, 0)}1t=0, by the implicit function theorem applied to F1
t�1,

for any x1 in a neighborhood of x⇤, there is a unique {ỹ1(x1), {x̃t(x1), ỹt(x1)}1t=2} such
that F1

t�1(x1, {y1(x1), {xt(x1), yt(x1)}1t=2}) = 0, and this is unique and equal to s(x1).
As a result, for x1 = x1(x0), the function x̃2(x1) for F1

t�1 = 0 must equal both x2(x0)

and x1(x1(x0)). Since this may be repeated infinitely often, we have that, for x0 in a
neighborhood of 0, the solution to F1

= 0 satisfies xt(x0) = x1(x1(...(x1(x0)))), i.e.,
the function x1 applied t times. So, we are justified in defining the function h(x) (on
values of x 2 Hx instead of deviations) as x1(x � x⇤

) + x⇤, which may be applied
recursively to find xt(x0). Similarly, by uniqueness and recursion yt(x0) = y0(xt(x0))

for all t, and so we may define g(x) as y1(x � x⇤
) + y⇤. So, for any x0 in N , there

exists a recursion xt+1 = h(xt), yt = g(xt) setting F (xt, yt, xt+1, yt+1) = 0 8t � 0,
with the claimed properties.

The claim that this recursion converges back to steady state follows from the fact
that {x0, s(x0)} 2 `1(H1) by construction.

The following minor result, possibly not new, ensures that the paths induced by
products of sequences of linear operators which converge, such as when the chain
rule is applied to find derivatives with respect to initial conditions of an object con-
structed recursively along a convergent sequence, exhibit the stability properties of
their limiting operator. It is used to ensure that the invertibility conditions required
for the implicit function theorem hold even along sequences starting away from the
steady state.

Lemma 9. Let {Ak}1k=1 be a sequence of operators in L(H! H) uniformly bounded
by C < 1 and converging in operator norm to a fixed limit A such that ⌃(A) is
strictly inside the complex unit circle �. Then kQn

k=1 Akk ! 0 as n ! 1, and
furthermore this convergence is at an exponential rate.

Remark. Under the conditions of the lemma, kAnk ! 0 exponentially by Gohberg
et al. (1990, Thm. IV.3.1), and for k sufficiently large, kAn

kk ! 0 also, so this
should be interpreted as saying that the stability of recursively constructed sequences
is unaffected by changes along the sequence which are eventually negligible. Note
that this statement is trivial also for sequences of normal operators, for which the
operator norm is given by the spectral radius and so kQn

k=1 Akk 
Qn

k=1 kAkk & 0.
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Proof. Convergence is given by a ‘blocking’-type argument. While the elements of
Qn

k=1 Ak converge to A, this convergence does not imply that the product of the
element converges to the product of the limit. Instead, the sequence may be separated
into blocks i = 1 . . .m of finite length Ji, which, since a convergent sequence is Cauchy,
each block contains a set of elements of diameter going to 0. Since asymptotically
the spectrum of Ak is strictly inside the unit circle, for large enough i and for long
enough Ji, the ji-fold product of any element within a block has norm bounded away
from 1, and for small enough diameter this is still true for the product over the block
itself. Since the norm of the product is bounded by the product of the norms of the
blocks, each less than 1, it decays exponentially as more blocks are added.

Denote the jth element in block i as Ai
j

. For any set of blocks, obtain kQn
k=1 Akk Qm

i=1 k
QJ

i

j=1 Ai
j

k. By convergence of Ak in operator norm, their spectra also con-
verge, and so for any small enough ✏ > 0, 9K1 such that8k > K1, sup |⌃(Ak)| <
sup |⌃(Ak)| + ✏ < 1. By Gohberg et al. (1990, Thm. IV.3.1) and uniform bound-
edness of the Ak, this implies that for any � > 0, for k > K1, there exists some
J(�) such that kAJ(�)

k k < � uniformly over k. For any block i, kQJ
i

j=1 Ai
j

� AJ
i

i
J

i

k 
CJ

i

�1
PJ

i

�1
i=1 kAi

j

� Ai
J

i

k. Since Ak is a Cauchy sequence, for any ✏2 > 0 there exists
K2 such that for all k1, k2 > K2 kAk1 � Ak2k < ✏2. For some ⇢ < 1 we may choose �,
✏2 such that for k > max{K1(✏), K2(�)}, k

QJ(�)
j=1 Ak+jk  CJ(�)�1

(J(�)� 1)✏2+ � = ⇢.
Let m = b(n�max{K1(✏), K2(�)})/J(�)c + 1, Ji = J(�) for all i � 2 and J1 =

n� (m� 1)J(�), i.e., the first max{K1(✏), K2(�)} elements, plus the remainder of n
after adding the largest feasible integer number of blocks of size J(�) after that. Then
by uniform boundedness and the fact that the remainder contains no more than J(�)

blocks, kQJ1
j=1 A1jk is bounded by a constant C2, and so for n > max{K1(✏), K2(�)}),

kQn
k=1 Akk  C2⇢m�1 which decays to 0 exponentially in m, and so in n as well.

Proof. of Theorem 6. Consider the map M(g, h, �)(x) = EF (x, g(x), h(x)+�⌘z0, g(h(x)+

�⌘z0), �) mapping B1 to W2,1
(N ! H2), the space of operators from Hx to H2

bounded on N ⇢ Hx with bounded first and second Fréchet derivatives on the same
region, where B1 is the Cartesian product of W2,1

(N ! Hy), the space of oper-
ators from Hx to Hy bounded and with bounded first and second derivatives on
N ⇢ Hx, W1,1

(N ! Hx), the Banach space of operators from Hx to Hx bounded
and with bounded derivatives on N ⇢ Hx, and [�✏, ✏] ⇢ R. We hope to solve
M(g, h, �)(x) = 0 implicitly for g and h as a function of � (where 0 is the operator
mapping all x 2 Hx to 0 2 H2). To do this, we must show @

@(g,h)M(g⇤, h⇤, 0)(x) is
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invertible, where g⇤, h⇤ are the deterministic operators found in the previous theo-
rem. To do this, it is sufficient to show that for every  (x) 2W2,1

(N ! H2), there
exists (unique) �(x) = (�g(x),�h(x)) 2W2,1

(N ! Hy)⇥W2,1
(N ! Hx) such that

@
@(g,h)M(g⇤, h⇤, 0)(x)[(�g(x),�h(x))] =  (x). Applying the definition of M, noting
that at � = 0 F is deterministic and so the expectation disappears, and rearranging,
obtain

Fy(x, g
⇤
(x), h⇤

(x), g⇤(h⇤
(x)))[�g(x)] + Fx0

(x, g⇤(x), h⇤
(x), g⇤(h⇤

(x)))[�h(x)] +

=  (x)� Fy0(x, g
⇤
(x), h⇤

(x), g⇤(h⇤
(x)))

@

@x
g⇤(h⇤

(x))[�h(h
⇤
(x))]

�Fy0(x, g
⇤
(x), h⇤

(x), g⇤(h⇤
(x)))[�g(h

⇤
(x))] (F.4)

To simplify notation, we write this as G1(x)�(x) =  (x) � G2(x)�(h⇤
(x)). At

x = x⇤, this reduces to Fy[�g(x⇤
)]+Fx0

[�h(x⇤
)] =  (x⇤

)�Fy0 [�g(x⇤
)]�Fy0gX [�h(x⇤

)], or
G1(x⇤

)�(x⇤
) =  (x⇤

)�G2(x⇤
)�(x⇤

). By assumption, G1(x⇤
) = [Fy, Fx0

] is invertible,
and so this equals �(x⇤

) + G�1
1 (x⇤

)G2(x⇤
)�(x⇤

) = G�1
1 (x⇤

) (x⇤
). This has a unique

solution if and only if �1 2 ⇢(G�1
1 (x⇤

)G2(x⇤
)) so I + G�1

1 (x⇤
)G2(x⇤

) is invertible,
which holds because we assume that ⌃(G�1

1 (x⇤
)G2(x⇤

)) is inside the complex unit
circle. Note that this is stronger than necessary for a unique solution at x⇤. However,
away from x⇤, the system becomes no longer time reversible, and components of the
spectrum outside the unit circle correspond to iterating x backward in time along
h⇤
(x). As h⇤

(x) generally has unbounded or even nonexistent inverse, these do not
generate bounded solutions for �(x) away from x⇤.

We next seek the value of �(x) away from x⇤ by using continuity and solving
forward. Since G�1

1 (x⇤
) is assumed bounded and G2(x⇤

) is bounded since Fy0 and gX

are, the resolvent set of G�1
1 (x⇤

)G2(x⇤
) is open. By continuity of the derivatives of F

and g⇤ with respect to x we therefore have that there is a neighborhood of x⇤ on which
G�1

1 (x)G2(x) is bounded and, by continuity of the spectrum of bounded operators,
has spectrum inside the unit circle. If so desired, we may restrict this neighborhood
so that the spectrum is bounded away from the unit circle. Since h⇤

(x) is stable and
continuous in a neighborhood of x⇤, there exists a neighborhood U0 contained in the
above neighborhood and N such that h⇤

(x) 2 U0 8x 2 U0. As a result, for any x 2 U0,
�(x) = G�1

1 (x) (x)�G�1
1 (x)G2(x)�(h⇤

(x)), and we may iterate this forward to obtain
�(h⇤

(x)) = G�1
1 (h⇤

(x)) (h⇤
(x)) � G�1

1 (h⇤
(x))G2(h⇤

(x))�(h⇤
(h⇤

(x))) and continue to
iterate to find an expression for �(x) in terms of an infinite series. Formally we have
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�(x) =
1X

k=0

�k (xk)

where xk and �k are defined recursively by x0 = x, xk+1 = h⇤
(xk), �1 = G�1

1 (x0)

�k = ��k�1G2(xk�1)G
�1
1 (xk). Since  2W1,1

(N ! H2),  (xk) is uniformly bounded
by a constant on U . By stability kxk � x⇤k ! 0, and by continuity of G�1

1 (x)G2(x),
G�1

1 (xk)G2(xk)! G�1
1 (x⇤

)G2(x⇤
) with spectrum bounded away from the unit circle,

the operator norm of �k must eventually decline exponentially by 9. As a result, the
series converges in H2-norm. Further, since this boundedness is true for all x, and the
uniform boundedness over x implies that the bound in9 can likewise be made uniform
over x, sup

x2U
k�(x)kH2 <1, and thus �(.) is bounded on U0.

To show that �(.) 2 W2,1
(U ! H2), we must first show that its first derivatives

are bounded on some set. To see this, first note that  (x) 2W2,1
(N ! H2) and so

has uniformly bounded derivatives on U0. Next, note that, by assumption, the deriva-
tives of F with respect to x, y, x0 and y0 themselves have uniformly bounded deriva-
tives, and, by the previous theorem extended to apply the implicit function theorem to
an operator which is twice continuously differentiable, h⇤ and g⇤ are themselves twice
continuously differentiable and so have uniformly bounded derivatives on a neigh-
borhood of x⇤. As a result, G�1

1 (x) and G2(x) have derivatives which are uniformly
bounded in a neighborhood of x⇤. By the stability of h⇤ on U0 and the uniform bound-
edness of its derivatives, writing d

dx
xk(x) =

Qk
i=1

d
dx
h⇤
(h⇤k�i

(x)) by the chain rule,
and noting that h⇤k�i

(x)! x⇤ and so by continuity d
dx
h⇤
(h⇤k�i

(x))! hX , which has
spectrum inside the unit circle by assumption, Lemma 9 applies and k d

dx
xk(x)k ! 0

exponentially. Denote the set over which all of these properties hold as U . Applying
the product rule, obtain d

dx
�(x) =

P1
k=0((

d
dx
�k) (xk) + �k

d
dx
 (xk)). The sum over

the second term converges uniformly in x by the convergence of �k and the fact that
d
dx
 (x) is uniformly bounded. By 9, products of j instances of G�1

1 (x)G2(x) evalu-
ated at different points are eventually bounded by �j for a constant � < 1. By the
decay of the derivative of xk to 0, and the uniform boundedness of G�1

1 , G2 and their
derivatives, for k larger than ¯k, k d

dx
[G�1

1 (xk)G2(xk)]k  � also. Applying the product
rule to the recursive formulation of �k, the first term of the derivative is bounded by a
constant times sup

x2U
k (x)kH2 times

P1
k=0(

Pk̄
i=0 k d

dx
[G�1

1 (x)G2(x)]ki�i�k̄
+

Pk
i=k̄+1 �

i
).

The first part is bounded by a constant times a convergent geometric series, the sec-
ond is bounded by a constant times

P1
k=0 k�

i which is also a convergent series. As a
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result, the series converges uniformly over x 2 U , and so d
dx
�(.) is bounded.

To show boundedness of second derivatives, essentially similar procedures can
be followed. By the product rule, d2

dx2�(x) =

P1
k=0((

d2

dx2�k) (xk) + �k
d2

dx2 (xk) +

2(

d
dx
�k)

d
dx
 (xk)). Since d

dx
 (x) is uniformly bounded, the summation of the last term

is bounded on an appropriate neighborhood by the exact procedures used to show
P1

k=0(
d
dx
�k) (xk) is bounded, and the second is bounded by the assumption that

 (x) 2 W2,1
(N ! H2) and so has uniformly bounded second derivatives. To show

the first part, we must control the second derivatives of the recursive construction of
�k. First note that for k large enough, k d2

dx2xk(x)kL(U!L(U!H
x

)) ! 0 exponentially.
To see this, note

d2

dx2
xk(x)[a][b] =

d

dx
[

kY

i=1

d

dx
h⇤
(h⇤k�i

(x))[a]][b]

=

kX

j=1

j�1Y

i=1

d

dx
h⇤
(h⇤k�i

(x)) · d2

dx2
h⇤
(h⇤k�j

(x))[
kY

i=j+1

d

dx
h⇤
(h⇤k�i

(x))[a]][b]

By the uniform boundedness of d2

dx2h⇤
() in a neighborhood of x⇤ which applies by the

implicit function theorem used to construct it extended to apply to a three times
continuously differentiable operator and by the convergence of iterated first deriva-
tives by the construction of the blocks in 9, this is bounded in operator norm by k

times an exponentially decaying quantity in k, and so itself is exponentially decaying.
Similarly, by three times continuous differentiability of F , the second derivatives of
G�1

1 and G2 are also uniformly bounded on a neighborhood of x⇤, and so using the
exponential convergence of d

dx
xk(x) and d2

dx2xk(x), the product rule and the chain rule,
k d2

dx2 [G
�1
1 (xk)G2(xk)]k ! 0 exponentially also. So, by the product rule again, d2

dx2�k is
the sum of k exponentially decaying components and so also declines exponentially in
k in operator norm. Uniform boundedness of k k(.)k and the continuity of the second
derivative of �k then imply the convergence of the geometric sum

P1
k=0((

d2

dx2�k) (xk)

uniformly over x in a neighborhood of x⇤. As a result, d2

dx2�(x) is bounded and so
�(.) 2W2,1

(U ! H2).
So, restricting all operators on N to U , we see that @

@(g,h)M(g⇤, h⇤, 0)(x) has a
bounded inverse on W2,1

(U ! H2).
Continuity of M(g, h, �)(x) and continuity of @

@(g,h)M(g, h, �)(x) with respect to
g, h, and � in a neighborhood of g⇤, h⇤, 0 are guaranteed by the bounded support
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condition on z, continuous differentiability of EF with respect to its arguments and
by the twice continuous differentiability of g, which holds at g⇤ as a corollary of the
implicit function theorem used to construct it, extended to three times continuously
differentiable F and locally in a neighborhood of g⇤ since we consider only operators
in W2,1

(U ! Hy). To see the importance of the bounded support condition, note
that � enters g(h(x)+�⌘z0) and so to ensure that x0 2 U for all x 2 U , it is sufficient,
since h(x) 2 U and U is open, there exists a radius ✏s such that k�⌘z0k < ✏s, which is
true if kz0k < 1 for � sufficiently small. As g(x) and gx(x), into which x0 enters in

@
@(g,h)M(g, h, �)(x), are guaranteed to be bounded and continuous only over a set U ,
allowing z0 to take unbounded support would result in the possibility of unbounded
changes for small changes in � if no further conditions were imposed on g and gx and
so could violate continuity. Combining the above conditions, the implicit function
theorem in Banach space implies that there exists a neighborhood (�✏, ✏) of � around
0 in which there exist continuous, differentiable functions g(., �), h(.�) from (�✏, ✏)!
W2,1

(U ! Hy)⇥W2,1
(U ! Hx) satisfying M(g(.�), h(., �), �)(x) = 0.

G Additional Figures

The following figures display the Euclidean norm of pointwise errors over a grid in
impulse responses calculated by Fourier and Wavelet basis at each time period for
different numbers of basis functions K. For details, see Section 6.
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