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Underlying much modern economic theory and econometric methodology is a function

space setting. Motivated by this perspective, this dissertation provides a set of tools

to construct and solve dynamic economic models with functions as state variables and

apply them in models of inequality over space and across individuals. I show how to

characterize the solution to function-valued models by linearization in function space,

provide a set of algorithms to compute this solution numerically in both regular and

ill-posed models, and prove that the algorithms are consistent. The power and efficacy

of the methods are illustrated in several examples including a dynamic stochastic

model of trade, migration, and economic geography.

Chapter 1: Solution of Rational Expectation Models With Function-

Valued States

Many variables of interest to economists take the form of time varying distribu-

tions or functions. This high-dimensional ‘functional’ data can be interpreted in the

context of economic models with function valued endogenous variables, but deriving

the implications of these models requires solving a nonlinear system for a poten-

tially infinite-dimensional function of infinite-dimensional objects. To overcome this

difficulty, I provide methods for characterizing and numerically approximating the

equilibria of dynamic, stochastic, general equilibrium models with function-valued

state variables by linearization in function space and representation using basis func-

tions. These methods permit arbitrary infinite-dimensional variation in the state vari-

ables, do not impose exclusion restrictions on the relationship between variables or
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limit their impact to a finite-dimensional sufficient statistic, and, most importantly,

come with demonstrable guarantees of consistency and polynomial time computa-

tional complexity. Numerical evaluation of the approximation algorithms against a

model with an exact benchmark demonstrates that they show speed and accuracy in

line with the theoretical guarantees.

Chapter 2: A Dynamic Model of Economic Geography

To study the evolution over time of the spatial structure of economic activity, pop-

ulation, and welfare, I introduce a dynamic stochastic model of trade, migration, and

economic geography. In this model, agents make forward-looking costly migration

decisions in response to a spatial distribution of wages which is determined endoge-

nously in spatial equilibrium as a function of the population distribution and patterns

of persistent regional shocks to amenity values. A closed form characterization of the

equilibrium is provided for a class of economies with idealized spatial structure and

numerical methods and simulation results are provided for a general case allowing

nonparametric spatial heterogeneity along a variety of attributes. The setting allows

for a reevaluation of the relationship between spatial agglomeration externalities and

population dynamics, suggesting that the sources of long-run spatial heterogeneity

may differ substantially from those driving the response to temporary shocks.

Chapter 3: Solving Ill-posed Function-Valued Rational Expectations

Models

In linear dynamic stochastic economic models with function space variables, a ra-

tional expectations solution taking function-valued inputs to function-valued outputs

is defined by a decomposition, analogous to the generalized Schur decomposition of

matrices, of a set of operator equations into components. A computationally feasible

approximation of the solution may be constructed by projection on a set of basis func-

tions. But when the operators defining the equilibrium conditions are not compact,

the solution of the approximate system may fail to converge to the solution of the
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true system. This failure arises from multiple breakdowns of continuity in the map

from approximation to solution. A solution is devised that enables components to

be constructed sequentially, applying regularization at each step. Due to the lack of

compactness, standard regularization methods for linear ill-posed inverse problems do

not suffice to ensure continuity, and inverses are instead constructed by uneven sec-

tion methods based on the generalized sampling technique of Adcock et al. (2014a).

Guidelines for tuning parameter selection are provided, and the performance of the

algorithm is demonstrated on an example model.
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Notation

H, with any subscript, is assumed to be a complete separable Hilbert space. B, with

any subscript, is Banach space. The notation k k is overloaded: if the object a is an

element of B, kak is the norm of a in B, and if a is in a Hilbert space H, kak = ha, ai 12

is the norm of a in H, where h , i is the associated inner product. If a 2 Ha but it is

not clear from context the space on which a lives, the norm may be denoted kakH
a

.

L(Ha ! Hb) is the space of bounded linear operators from Ha to Hb, equipped with

the operator norm: for A 2 L(Ha ! Hb), kAk = sup

kxkH
a

=1

kAxkH
b

. If clarification is

required, this norm may be denoted kAkop. A⇤ denotes the (Hermitian) adjoint of A:

8x 2 Ha, y 2 Hb, hAx, yi = hx, A⇤yi. A sequence of operators Ai 2 L(Ha ! Hb),

i 2 N is said to converge in operator norm topology, or ‘in norm’ to A if kAi�Ak ! 0.

For � a Cauchy contour in the extended complex plane C1 (see Conway (1978, Ch.

1 S. 6)) and f(�) : C1 ! L(Ha ! Hb) a function from one complex variable to a

linear operator,
´

�

f(�)d� is the path integral of f(�) over the curve �, as defined in

Gohberg et al. (1990, Ch. I). I is the identity operator: if the space Ba on which

it acts needs to be specified, it is written IB
a

. For A 2 L(Ha ! Hb), Im(A) is the

image of A and Ker(A) is the kernel of A. For a pair of bounded operators (B, A)

each in L(Ha ! Hb), following Gohberg et al. (1990), define the spectrum �(B, A)

ix



as those � 2 C such that �A � B is not invertible, accompanied by the point 1
if and only if A does not have bounded inverse, and the resolvent set ⇢(B, A) as

C1\�(B, A). An operator pair is said to be �-regular if for some nonempty subset

� ⇢ C1, � ⇢ ⇢(B, A). Brackets A[h] may optionally be used to denote that h is

an argument of linear operator A, parentheses A(h) generally denote that h is an

argument of (possibly) nonlinear operator A. For nonlinear functions and operators,

F (a, b), Fa and Fb are the partial derivatives with respect to arguments a and b

respectively. For a variable x, which may be a function, x0 denotes the variable in

the next time period, not the derivative. The Fourier transform of a function f(x) is

denoted with the scale convention ˆf(!) := F [f(x)](!):=
´

exp(�2⇡◆!x)f(x)dx.

x



Chapter 1

Solution of Rational Expectation

Models With Function-Valued States

Many variables of interest to economists take the form of time varying distributions or

functions. This high-dimensional ‘functional’ data can be interpreted in the context of

economic models with function valued endogenous variables, but deriving the impli-

cations of these models requires solving a nonlinear system for a potentially infinite-

dimensional function of infinite-dimensional objects. To overcome this difficulty, I

provide methods for characterizing and numerically approximating the equilibria of

dynamic, stochastic, general equilibrium models with function-valued state variables

by linearization in function space and representation using basis functions. These

methods permit arbitrary infinite-dimensional variation in the state variables, do

not impose exclusion restrictions on the relationship between variables or limit their

impact to a finite-dimensional sufficient statistic, and, most importantly, come with

demonstrable guarantees of consistency and polynomial time computational complex-

ity. Numerical evaluation of the approximation algorithms against a model with an

exact benchmark demonstrates that they show speed and accuracy in line with the

theoretical guarantees.
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1.1 Introduction

In order to understand and evaluate the causes and consequences of economic hetero-

geneity, it is helpful to have an analytical framework in which the distribution of het-

erogeneity can change over time and can both affect and be affected by other variables.

A perspective in which some of the state variables of an economic model are endoge-

nous random functions allows distributions, as well as objects like demand and supply

curves or policy or value functions, to be treated as data. While descriptive mod-

els and methods for function-valued time series are undergoing rapid development,1

interpreting this data requires formulating economic models capable of generating

the observed functional data and deriving their implications. For models featuring

forward looking decision making and endogenous aggregate variables, this derivation

typically requires solving a computationally intractable infinite-dimensional system

of nonlinear expectational difference equations. Although heuristic or strongly model

dependent methods have been proposed, to date there appears to be no general pur-

pose algorithm which provides a formal guarantee of even an approximate solution to

rational expectations models with stochastic function-valued states.

This paper provides such an algorithm. In particular, it demonstrates how the

equilibrium conditions for a general class of function-valued rational expectations

models, including but not limited to heterogeneous agent dynamic stochastic gen-

eral equilibrium models, can be linearized directly in function space, with solutions

characterized locally by a functional linear process, a tractable empirical model for

function-valued time series (Bosq, 2000). Construction of a local solution requires

introducing a novel infinite-dimensional extension of the generalized Schur decom-

position used to solve finite-dimensional rational expectations models (Klein, 2000)

and developing perturbation theory for this object, which may be contributions of
1See Horváth & Kokoszka (2012); Bosq (2000); Morris (2014); Ferraty & Romain (2011) for sur-

veys of the rapidly expanding field of functional data analysis, which focuses on modeling, estimation,
and inference for series of observed or estimated functions.

2



independent mathematical interest. The solution can be implemented numerically by

a procedure based on finite-dimensional projection approximations which converges

to the local solution under mild regularity conditions. I analyze in detail a particular

approximation algorithm in this class, a wavelet transform based procedure which

yields an approximate solution accurate to within any desired degree in polynomial

time.

To evaluate the method, I apply it to a dynamic spatial model of trade, migra-

tion, and economic geography, developed and further analyzed in Chapter 2, which

introduces forward looking migration decisions and spatial shocks into the economic

geography model of Krugman (1996). In the model, the spatial distribution of popu-

lation, wages, and welfare over a continuum of locations is allowed to vary nonpara-

metrically in response to persistent spatially correlated shocks to the desirability of

different locations. Due to the spatial structure of trade and production, the spatial

distribution of economic activity is a determined by the distribution of population

across locations, while the distribution of population is determined by forward look-

ing migration decisions which take into account the expected distribution of economic

activity. In this setting, the relationship between these two functions is not easily re-

duced to low-dimensional summaries or split into “local” and “global” components,

but is well characterized by a functional linear model representation. By exploiting

an analytical characterization of the solution to (certain parameterizations of) this

model, the speed and numerical accuracy of the algorithm are evaluated in practice

and shown to be in line with the strong theoretical guarantees.

The core idea behind the solution method is functional linearization. By taking

the functional derivatives of the equations defining an equilibrium, it is possible to

construct a system of equations which can be solved for the functional derivatives at a

fixed point in function space of the policy operator, a map from function-valued states

to function-valued endogenous variables. In this way, it is possible to recover local

3



information about the solutions, which can then be used to construct a functional

Taylor expansion of the policy operator which provides an accurate solution for all

functions not too far from the function around which the model is linearized.

Constructing this linear approximation of the policy operators from the functional

derivatives of the model equations requires solving a system of quadratic equations in

linear operators. In the case of linear or linearized finite-dimensional rational expec-

tations models, the analogous quadratic equation can be solved using matrix decom-

position. In particular, Klein (2000) demonstrated that a solution can be found using

the generalized Schur (or QZ) decomposition of the matrices of derivatives. In infinite

dimensions, an analogous decomposition appears to be absent from the literature, in

part because the finite-dimensional version is constructed by induction using eigen-

values, which may fail to exist or have countable cardinality in infinite-dimensional

space. Nevertheless, it is possible to construct an analogous decomposition by other

methods, described in detail in Appendix A. Under the conditions required for such

a decomposition to exist and under further conditions analogous to the well known

criterion of Blanchard & Kahn (1980) ensuring that the model has a linear solution,

it is possible to solve for the first order expansion of the policy operator.

Calculating this local solution numerically requires representing it in a form that

can be evaluated on a computer. A standard procedure for reducing problems in

function spaces to finite-dimensional objects is to approximate the functions by pro-

jecting the space onto the span of a set of basis functions, such as wavelets, splines,

or trigonometric or Chebyshev polynomials, and representing operators on function

space in terms of their behavior with respect to the basis functions. These approaches

are referred to as spectral methods and are commonly applied to solve integral and

differential equations: see Boyd (2000), Chatelin (2011). If any function we are inter-

ested in can be represented reasonably accurately by a finite set of basis functions,

the loss from the use of a finite set of functions may be small. The caveat here is

4



that, unlike in classical function approximation problems where the class of functions

is known, ‘the set of functions we are interested in’ is not explicitly assumed, but

must be determined by the properties of the model.

The issue that projection methods must overcome is that the class of functions well

approximated by finite projection is in fact small in the class of all possible functions

which could conceivably arise endogenously as outcomes of an implicitly defined model

with function valued variables. To handle this concern, conditions must be imposed

on the model which ensure both that the solutions themselves are continuous with

respect to projection approximations and that the solutions are operators which have

the property that they map functions which are well approximated by basis functions

to functions which are well approximated by basis functions. Continuity properties

of the generalized Schur decomposition are derived in Appendix A, and a set of

restrictions on the model which ensure that basis function approximation is valid is

described in Section 4.2.

While the precise statements of the sufficient conditions on a model for projection

to be valid are somewhat technical, the conditions themselves are rather mild. Essen-

tially, they rule out certain kinds of maps which take well-behaved smooth functions

as input and produce jagged, noisy, or discontinuous functions as output. Many eco-

nomic models can be represented in forms which satisfy these conditions, and many

of those that do not can be modified slightly so that they do, for example by smooth-

ing discontinuous cost functions or adding a small amount of noise to ensure that a

distribution remains smooth.

Provided that the regularity conditions hold, implementing the solution is simple

and fast. The linearized equilibrium equations can be approximated by projection,

either analytically or numerically by quadrature, to produce two pairs of matrices,

to which one can apply the finite-dimensional QZ decomposition, solve and combine

to form a matrix approximation to the infinite dimensional policy operator. The

5



accuracy of the approximation is then determined by the number of basis functions

used and the smoothness of the functions that they are used to approximate. If all

the equilibrium conditions are defined using Hölder continuous functions, wavelets

provide the smallest and fastest feasible representation. Implementing approximate

projection using the Discrete Wavelet Transform, the method converges in a number

of operations polynomial in the degree of accuracy of the solution and in numerical

experiments gives demonstrably accurate results at high speed. High level conditions

are also provided for more general procedures, including for the case when parts of

the model are estimated directly from data.

The dynamics of economic heterogeneity have been considered from a variety of

perspectives. Surveys of heterogeneous agent models are available in Krusell & Smith

(2006); Heathcote et al. (2009); Guvenen (2011); Ljungqvist & Sargent (2004). A

canonical framework is the Bewley model (Bewley, 1986), sometimes referred to as the

Bewley-Huggett-Aiyagari model after the models and algorithms of Huggett (1993)

and Aiyagari (1994). These models produce a time invariant cross-sectional distribu-

tion of income and wealth given by the stationary distribution endogenously induced

by individual decisions which are themselves determined by the distribution. While

not permitting any stochastic variation over time in distributions, the algorithms

introduced to solve these nonstochastic models can be used as the first step in the

linearization procedure I will provide, to find the point in the space of distributions

around which to construct a linearized solution to a model with a stochastic distri-

bution of heterogeneity.

To accommodate the setting where the distribution may evolve stochastically over

time, Krusell & Smith (1998) introduce aggregate uncertainty into the Bewley model

and provide a procedure to calculate approximate decision rules and generate dy-

namics of distributions jointly by simulation and representation of the impact of the

distribution on decisions through a small set of moments. This method is particularly

6



well suited to the model in that it takes advantage of a feature the authors refer to

as ‘approximate aggregation.’ In the Krusell-Smith model, due to the use of a one-

dimensional source of aggregate variation, an economic structure in which the impact

of the distribution on the decision problem occurs only indirectly through its impact

on prices in a centralized market, and a set of preferences and constraints that yields

a decision rule which appears close to linear in individual states over most of the

state space, a low-dimensional set of statistics of the wealth distribution suffices to

describe its dynamics with a high level of accuracy. As a result, the decision problem

can be reduced to a low-dimensional nonlinear decision problem in these statistics

with apparently minimal loss of accuracy.

However, many of the features which make the Krusell-Smith method well suited

to their model and similar models are far from universal. In particular, the finite-

dimensional set of aggregate shocks limits variation in the shape of the functions of

interest, and may create difficulty in matching estimates of the functions from cross-

sectional data. Unless variation over time in the function lies exactly on the same

low-dimensional space along which the model implies the functions move, observed

functions may not be consistent with any possible values of the aggregate shocks,

and so full information statistical methods will reject the specification completely.

The low-dimensional set of aggregate shocks may also prevent consideration of eco-

nomically important features, whether they affect the shape of the functions directly,

such as shocks to uncertainty, skewness, and higher moments of a distribution, as

documented by Guvenen et al. (2012) for income distributions, or enter the model

via other variables, such as the variety of sources uncertainty included in medium

scale DSGE models. While procedures like the Krusell-Smith method can handle

some increase in the dimensionality of the space of aggregate shocks by adding more

statistics, increasing the dimension of the state space in the intertemporal decision

problem can be computationally costly, with naive approaches based on discretiza-

7



tion or tensor product function representations scaling exponentially in the number

of state variables, and more sophisticated approaches, such as the Smolyak method of

Gordon (2011), requiring some degree of difficult to verify regularity in the induced

distribution.

Moreover, the restriction of the impact of the distribution to acting only on a finite

set of market prices is less tenable in situations where interactions are decentralized,

or the distribution enters the decision problem directly. This can be the case, for

example, in spatial models, like the one considered in Section 3, where market out-

comes differ across locations due to costs of trade or other economic interactions over

distance, and in which decisions depend on the entire spatial distribution of economic

activity due to both local and long distance interactions.

Many extensions and alternatives to the Krusell-Smith method are available: a

Journal of Economic Dynamics and Control symposium (Den Haan, 2010) compares

a variety of methods. Methods based on linearization or perturbation are not new,

and are explored in, among others, Reiter (2009), Chung (2007), Winberry (2014)

and Veracierto (2014). Perturbation approaches, which build on the class of linear

rational expectations solution methods introduced by Blanchard & Kahn (1980) and

extended by Klein (2000) and others, describe variability locally, and are much more

amenable to including high-dimensional aggregate shocks than global, fully nonlin-

ear approaches. Reiter (2009) developed the approach of linearizing models around

nonlinear functions and distributions, and noted that by doing so, local methods can

capture differences of large magnitude in the heterogeneous state between individ-

uals and completely nonlinear responses to those differences while maintaining the

tractability of linear methods for aggregate variables.

All of the considered perturbation approaches differ from the one advocated here

because they do not consider linearization in function space. Instead, they replace

functions by finite-dimensional approximations, either by projection or discretization,
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and then linearize and construct a solution based on applying algorithms applicable

to finite-dimensional expectations models. The difference between linearizing and

solving in infinite-dimensional space before taking a finite-dimensional approximation

and taking a finite-dimensional approximation before linearizing and solving may

seem minor, but the first approach is key to ensuring that the resulting solution

is well defined in terms of the true solution of the model and that the algorithm

produces an answer which is provably close to this solution. These approaches also

fail to consider that, except under certain regularity conditions, applying a finite-

dimensional solution method to the approximated equilibrium conditions need not

guarantee that the solution is accurate, even if the approximation of the conditions

is, because the solution is not in general continuous with respect to the approximation

error.

More generally, none of the methods described, including Krusell-Smith, provide

or attempt to provide any formal proof that the approximation converges to a true

solution. Although numerical demonstrations may be used to assess features con-

sistent with the accuracy of the methods and so diagnose certain inaccuracies in an

approximated solution, they cannot certify that the output of the algorithm is valid.

Because it comes with formal guarantees, the functional linearization approach intro-

duced here provides for the first time a benchmark which can be used to characterize

a solution to dynamic models with heterogeneous agents which can be assured to be

accurate.

Outline

The structure of this paper is as follows. I describe the setting of rational expec-

tations models with function valued states in Section 1.2. Section 1.3 characterizes

and gives necessary conditions for the existence of solution to the linearized model,

while Section 1.4 introduces projection algorithms for calculating this solution and
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describes conditions for their consistency. Section 1.5 evaluates the performance of

the procedure on the model developed in detail in Chapter 2. Section 1.6 concludes.

Several appendices contain technical results: Appendix A.1 describes conditions for

existence of an infinite-dimensional version of the generalized Schur decomposition,

and Appendix A.2 gives conditions under which it is continuous. Appendix C collects

all proofs, and Appendix B provides high level sufficient conditions for the existence

of recursive equilibria in function-valued dynamic models.

1.2 Function-Valued Models and Linearization in Func-

tion Space

The class of dynamic economic models which may be placed in a framework amenable

to linearization in function space is large. Many economic models define objects of

interest, explicitly or implicitly, as functions which solve a set of equations represent-

ing conditions such as optimization, market clearing, self-consistency, feasibility, or

accounting identities. For example, a consumption function is often represented im-

plicitly as the solution to an Euler equation, or a value function as the fixed point of

a Bellman operator. Most trivially, when economic variables take values in Euclidean

space, all of the theory developed in this paper will continue to apply. To see how ran-

dom functions may naturally enter the description of an economic model, let us first

consider a simple and illustrative case, before providing a general characterization.

It is common in microeconometric study of the dynamics of income and consump-

tion by consumers or production by firms to model individual behavior by a linear

dynamic panel model. A simplified version of this model is given by the assumption

that, for each agent i, the variable of interest ⇣it follows the autoregressive process

⇣it+1

= ⇢⇣it + ✏it+1

, where ✏it+1

is independent of ⇣it and across agents and |⇢| < 1.

While it is conventional to take an interest in the individual persistence parameter

10



⇢, for the purposes of analysis of aggregates and welfare we may also be interested

in the cross sectional distribution of the attribute ⇣it, which may be represented by

pdf ft(⇣). Given a measure 1 continuum of agents following this rule, the evolution

of this distribution can be determined from its past value and the distribution of

the shock ✏it+1

. To model time varying effects such as aggregate shocks, we may let

✏it+1

i.i.d.⇠ pt+1

(✏) across agents, where the density function pt+1

(.) may be taken as

a function-valued random variable for each t. This models not only mean shifts, as

would be captured by time fixed or random effects, but also distributional changes

such as the changes in polarization or tail behavior of income risk as documented,

for example, in Guvenen et al. (2012). Under this assumption, we have a dynamic

equation for the evolution of the distribution of ⇣, given by the convolution of the

past distribution and the shock distribution

ft+1

(⇣) =

ˆ
pt+1

(⇣ � ⇢u)ft(u)du (1.1)

which provides a recursive representation for a function-valued economic variable of

interest, ft(.), in terms of current and past values of the state, an operator mapping

between them, and an exogenous shock which is also function valued, pt+1

(.).

To formalize the linearization procedure for this and other models, and to pro-

vide a framework which permits both variables which are predetermined and those

determined by forward looking expectations, we provide a notational framework for

a general class of models. The notation and structure to be used follows closely that

of Schmitt-Grohe & Uribe (2004), who described perturbation procedures for finite-

dimensional rational expectations models, with the difference that we now allow state

variables to be elements of an infinite-dimensional space. We consider in particular

models with a recursive representation described by a set of equilibrium conditions

which may be expressed as differentiable operators between separable Banach spaces.
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A solution to the model defines a recursive law of motion for the endogenous variables

in the system in terms of the exogenous variables and past values of endogenous vari-

ables. The law is determined implicitly as the solution of a nonlinear expectational

difference equation

EF (x, y, x0, y0,�) = 0B2 (1.2)

where x 2 Bx is a set of predetermined variables, y 2 By is a set of endogenous or

‘jump’ variables, a superscript x0, y0 indicates the values of these elements in the next

time period t+1 and the absence thereof indicates values of variables known at time t,

� 2 R is a scalar scaling parameter determining the size of fluctuations. The function

F (x, y, x0, y0,�) : Bx ⇥ By ⇥ Bx ⇥ By ⇥R! B
2

, which we refer to as the equilibrium

operator, is a map taking the values of the state variables today and tomorrow and the

scaling parameter to a space B
2

, and E is the (Bochner) expectation with respect to

the law of motion induced by the solution of the model, to be made explicit shortly.2

Uncertainty in the model is incorporated solely via exogenous Banach random

elements z0 on probability space (Bz, ⌃z, µz
), which enter into the exogenous law

of motion generating a subset of the predetermined variables x
2

, with (x
1

, x
2

) 2
Bx1 ⇥ Bx2 = Bx, by the equation x0

2

= h
2

(x
2

) + �z0 for h
2

: Bx2 ! Bx2 a given

function describing the dependence of future values of x
2

on current values. The

shocks z0 are normalized to have zero mean E[z0] = 0. As a result, F contains as one

subcomponent the formula x0
2

� h
2

(x
2

).

While this form may appear somewhat restrictive, many apparent limitations may

be addressed through inclusion of appropriate auxiliary variables and equations. For

example, while only variables in two time periods are included, by including lags and
2The Bochner integral of a B-valued random variable g on probability space (⌦,⌃, µ) is given

by an element Eg 2 B defined for simple functions g =
P

n

i=1 f

i

{! 2 A

i

} for f

i

in B, A

i

2 ⌃ as
Eg =

P
n

i=1 f

i

µ[A
i

] and for more general random variables g as the strong limit of the Bochner
integral of a sequence of simple functions g

n

such that µ kg � g

n

kB ! 0. A measurable random
element is Bochner integrable if and only if µkgkB <1.
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leads as separate variables, systems dependent on more time periods may be brought

into this recursive form. Likewise, while function-valued uncertainty z0 is restricted

to enter additively in the model, nonlinear effects of shocks may be included by

adding an additional predetermined variable which is a function of the shock: e.g.,

if zk enters nonlinearly in F , replacing zk with x
2k and incorporating the equation

x0
2k = Ez0k +�(z0k�Ez0k) can recover the nonlinear effects. Overall, beyond imposing a

recursive structure, the form provides a consistent notation but imposes only modest

restrictions on the form of the economic model.

A (recursive) solution is given by a set of policy operators which solve the equi-

librium equation for any value of the initial predetermined state x and the exogenous

shocks z. In each period, y is given by the endogenously determined map g(x, �) from

predetermined state x to endogenous state y (or x0 to y0), and x0 is given by the tran-

sition operator h(x, �)+�⌘z0 mapping the current predetermined state and shocks to

next period’s predetermined state, where ⌘ denotes the imbedding Bx2 ! Bx, i.e. for

z 2 Bx2 , ⌘[z] = (0, z) 2 Bx1 ⇥ Bx2 , and h(x, �) = (h
1

(x, �), h
2

(x
2

)) includes both an

endogenously determined transition component h
1

and an exogenous component h
2

.

Definition 1.1. A recursive solution is a set of maps g(x, �) : Bx ⇥ R ! By,

h
1

(x, �) : Bx ⇥ R ! Bx1 , h
2

(x
2

) : Bx2 ! Bx2 such that the equilibrium conditions

hold:

EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0B2 (1.3)

for all x, �, where the expectation E may now be defined, for each x, � as the

expectation with respect to the pushforward measure of µz on B
2

generated by the

function F (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) : (x, z0,�) 2 Bx ⇥ Bx2 ⇥
R! B

2

evaluated at fixed x, �.

It can be shown that this pointwise in x definition of a solution generates a stochas-

tic process for (xt, yt) under mild measurability conditions on the functions chosen.
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(i) Let {zt}1t=0

be an i.i.d. sequence on the infinite product of independent copies

of (Bz, ⌃z, µz
) and initial value x

0

be defined on (Bx, ⌃x) with distribution µx
0

, where

⌃x is a sigma field containing ⌃z. (ii) Fix � 2 R. Suppose h(x, �) is (Bx, ⌃x) !
(Bx, ⌃x) measurable, g(x, �) is (Bx, ⌃x) ! (By, ⌃y) measurable for some ⌃y, and

F is measurable with respect to the product sigma field ⌃x ⌦ ⌃y ⌦ ⌃x ⌦ ⌃y on

Bx ⇥ By ⇥ Bx ⇥ By

The measurability restrictions on h and g do impose some nontrivial limitations

on the class of solutions to be considered by ruling out auxiliary randomness in the

policy functions for aggregate variables beyond that included in z. For certain classes

of models, randomization may be necessary to ensure existence of a solution, see

Miao (2006). If this can be incorporated in z by expanding the state space, this poses

no difficulty, but because the model will be solved by approximating near a point

with no aggregate variability, the method cannot accommodate models which have

no solution without aggregate randomness.

Proposition 1.1. The series defined recursively by x
0

⇠ µx
0

, x
2,t+1

= h
2

(x
2,t) +

�zt+1

, x
1t+1

= h
1

(xt,�), yt = g(xt,�) 8t � 0, where h, g are a recursive solution

satisfying Condition 1, is measurable with respect to the infinite product sigma field

and EF (x, g(x, �), h(x, �)+�⌘z0, g(h(x, �)+�⌘z0,�),�) coincides with the conditional

expectation of F (xt, g(xt,�), h(xt,�)+�⌘zt+1

, g(h(xt,�)+�⌘zt+1

,�),�) at time t given

xt = x.

Proof. See Appendix.

In order to ensure computation of a stationary solution, the point around which

the model is linearized is a nonstochastic steady state, which allows construction of a

solution which is both local and recursive, by ensuring that the point around which

the rule is calculated is the same in all periods.

Definition 1.2. A nonstochastic steady state is a set of values (x⇤, y⇤) 2 Bx ⇥ By
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such that when � = 0 and so function-valued uncertainty disappears, F satisfies

F (x⇤, y⇤, x⇤, y⇤, 0) = 0

Many recursive models will have such a point, at which all aggregate variables

are unchanging over time. This is the equilibrium concept used in Bewley-Huggett-

Aiyagari models, in which the distribution of heterogeneity is given by an invariant

distribution generated by individual decision rules, and its existence can often be guar-

anteed by fixed point theorem. It may also be calculated consistently by standard

methods, such as the iterative algorithms proposed by Huggett (1993) and Aiyagari

(1994). In general, determining the nonstochastic steady state of a model involves

solving a functional equation, which will differ depending on the details of the model.

However, the problem involves determining only a single set of functions rather than

an operator valid for any function, and is often quite feasible using standard methods.

For example, in models where the decision rule is a function-valued state variable,

recursive solutions are often available by dynamic programming, for which there are

many feasible approximation algorithms with exponential or similarly fast conver-

gence rates. Calculation of invariant distributions of Markov processes is also often

achievable by iterative methods with exponential convergence. More broadly, in the

absence of infinite-dimensional uncertainty, the problem usually reduces to a set of

integral equations, for which a broad variety of standard numerical integral equation

methods may be used.

A linearized solution of the model is given by first order Taylor expansion of g(.)

and h(.) with respect to their arguments at the steady state. In order to solve for this,

g(.) and h(.) and the operator F : Bx⇥Bx⇥By⇥By ! B
2

must be differentiable with

respect to their arguments. In Banach space, the appropriate notion of derivative for

linearization is (usually) the Fréchet derivative, which is defined analogously to the
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Fréchet derivative in Euclidean space.3 If F (x) is operator between Banach spaces

B
1

! B
2

, the Fréchet derivative, if it exists, is the continuous linear operator DF

satisfying

lim

khk1!0

kF (x + h)� F (x)�DF [h]k
2

khk
1

= 0. (1.4)

In practice, calculation of Fréchet derivatives of Banach space-valued operators is

not difficult: they obey many of the standard rules of Euclidean-valued derivatives

including linearity, additivity, and the product rule, and many standard operators

have known derivatives: see e.g. Kesavan (2004). Most importantly, the Fréchet

derivative follows a version of the chain rule: for two Fréchet differentiable operators

F , G, D(F � G)[h] = DF [DG[h]]. Fréchet differentiability is strictly stronger than

directional, or Gateaux differentiability, which requires only the existence of a limit

in the direction of a fixed element h. As the Gateaux derivatives of F in any direction

h 2 B may be calculated as the scalar derivative d
d⌧

F (x + ⌧h) at ⌧ = 0 and must

coincide with the Fréchet derivative when the latter exists, the form of the Fréchet

derivative is easily determined. The Fréchet derivative preserves linear operators, so

integration, differentiation, multiplication by a function, and any composition thereof

have derivatives equal to themselves. A special class of operators which arises fre-

quently in economic models is the composition of one function with another, referred
3For operators defined or differentiable only on subsets (not necessarily subspaces) of infinite-

dimensional Banach spaces, such as the positive cone of non-negative measures, it may sometimes be
desirable to consider the Hadamard derivative (see Flett (1980)) tangential to a set, which requires a
derivative to be defined uniformly only over compact sets and so is weaker than the Fréchet derivative,
which requires uniformity over closed balls, which in infinite dimensions are not compact. While
the chain rule and a version of the implicit function theorem also apply for this class of derivatives,
and so a linear approximation may be defined by the same equations with the Hadamard in place of
the Fréchet derivative (and the derivatives exactly coincide on finite-dimensional spaces), the Taylor
expansion will in be defined only over the subset on which a Hadamard derivative exists, and have
a remainder with size dependent on the direction of the path of the approach, rather than just the
norm. The domain restriction may not be a problem in practice, as in most cases the derivatives
may be extended by the Hahn-Banach theorem to a larger space in a canonical way, for example,
by removing positivity restrictions. If a solution does exist and is Hadamard differentiable, the
Hadamard derivatives of the operators of interest will coincide on their domain with the extended
operators on the total space. When this is the case, the same first order approximation may be
constructed and approximated by the algorithm provided, but will be valid only for directions in
which Hadamard differentiability holds.
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to as a Nemytskii operator. Under appropriate boundedness, differentiability, and in-

tegrability conditions on f(s
1

, s
2

), the composition f(g(x), s
2

), viewed as a map from

the function g(.) of x to the function f(g(x), s
2

) of x, s
2

is a Fréchet differentiable

function of g(.) at the point g⇤(.) with derivative fs1(g
⇤
(x), s

2

) · [h(.)]: that is, the

derivative is given by multiplication of the direction in which g changes by the partial

derivative of f with respect to the element with which it is composed (Kesavan, 2004).

In Banach space, Taylor’s theorem for Fréchet derivatives gives a linear approximation

of a differentiable operator F (x) : B
1

! B
2

as F (x + h) = F (x) + DF [h] + o(khk
1

).

It is important to contrast a Taylor expansion in function space with a local solu-

tion for finite-dimensional models. The point at which the linearization is constructed

is the stationary state of the model in the situation where the variance of function-

valued shocks is taken to 0. This is not the same as shutting down all variability in the

model. In most heterogeneous agent models, individuals face a distribution of idiosyn-

cratic uncertainty which may be arbitrarily dispersed and induces a nondegenerate

stationary distribution of heterogeneity, in which the state of each individual evolves

stochastically over time. In these models, the steady state function is the stationary

distribution of heterogeneity, in the absence of aggregate shocks. For example, the

unemployment rate can be constant over time while each individual faces employment

risk, with the number of people entering and leaving unemployment equal. Similarly,

linearization of the policy operator does not imply all decision rules are linear: deci-

sions with respect to individual characteristics may be arbitrarily nonlinear. Instead,

the relationship between function-valued state variables is expressed in terms of linear

operators. Loosely, the value of one nonlinear function at each point can be thought

of as approximated by a linear function of the values of each other function at each

point.4 As a result, a first order functional Taylor expansion can describe rather
4This description is accurate for discrete functions: for general functions, the proper statement

is that each linear functional of the output function is equal to a different linear functional of the
input function.
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complicated patterns of behavior.

To illustrate the process of linearization, consider the law of motion for the dis-

tribution provided by the panel model in (1.1): a linear approximation will describe

the law of motion in the case of ‘small’ changes in the distribution. To consider the

model in the case of small i.i.d. over time aggregate shocks to the cross sectional

distribution pt+1

(✏) of idiosyncratic shocks, write the law deviations from the mean

as pt+1

(✏)� p⇤(✏) = �zt+1

(✏), for zt+1

(✏) an i.i.d. over time Bochner mean 0 random

function so that at � = 0 the distribution of ✏ is constant over time at a fixed distri-

bution p⇤(✏). In the above notation x0
2

= pt+1

(✏)� p⇤(✏), z0 = zt+1

(✏) and h
2

(x
2

) = 0

because we have assumed that the exogenous aggregate shocks are not persistent.5 To

complete the description of the model, we may take as the endogenous predetermined

variables x
1

= ft, x0
1

= ft+1

, and

F (x
1

, x
2

, x0
1

, x0
2

) =

2

64
ft+1

(⇣)� ´ pt+1

(⇣ � ⇢u)ft(u)du

pt+1

(✏)� p⇤(✏)

3

75

as the equilibrium operator defining the model. In this case, all variables are pre-

determined or exogenous, so there is no y variable. A linear approximation with

respect to f and p is given by taking the functional derivative of F with respect to

pt,ft, pt+1

, ft+1

around a nonstochastic steady state f ⇤, p⇤ satisfying p(✏) = p⇤(✏),

f ⇤(⇣) =

´
p⇤(⇣ � ⇢u)f ⇤(u)du, which exists whenever |⇢| < 1 under mild conditions

on the density p⇤ of the error term: see Christensen (2014). Applying the chain rule

and the product rule, a Taylor expansion of the law of motion for ft+1

in pt+1

and ft

5Allowing h2(x2) in the model to be nonzero would represent persistence in the aggregate shock
to the distribution of error terms. After linearization, the cross sectional distribution of ⇣, the ob-
servable individual characteristic, would then be approximated by a functional ARMA(1,1) process,
instead of a functional AR(1).
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is given by

ft+1

(⇣) =

ˆ
p⇤(⇣ � ⇢u)f ⇤(u)du +

ˆ
p⇤(⇣ � ⇢u)[ft(u)� f ⇤(u)]du

+

ˆ
[pt+1

(⇣ � ⇢u)� p⇤(⇣ � ⇢u)]f ⇤(u)du + o(k(ft � f ⇤, pt+1

� p⇤)k).

Substituting in the (already linear) law of motion pt+1

= p⇤ + �zt+1

and the steady

state relation, obtain

ft+1

(⇣)�f ⇤(⇣) =

ˆ
p⇤(⇣�⇢u)[ft(u)�f ⇤(u)]du+�

ˆ
zt+1

(⇣�⇢u)f ⇤(u)du+o(k(ft�f ⇤, pt+1

�p⇤)k)

which expresses the deviation from the steady state in time t + 1 as given by a linear

operator applied to the deviation from steady state in time t plus, by linearity of

the expectation and of the integral operator applied to zt+1

(.), a mean 0 exogenous

Banach random element. That is, it may be written as

f 0 � f ⇤ ⇡ B[f � f ⇤] + �"0

for some linear operator B and some mean zero noise "0, a linear functional autore-

gression as in Bosq (2000), so long as both the noise and the deviation from a steady

state are small. As similar procedures may be applied to more general dynamic panel

data models, one sees that a functional linear process may provide a local approxi-

mation to the law of motion for distributions of cross-sectional aggregates for a wide

range of commonly used empirical models of individual and aggregate behavior.6

In what follows, I will show how to use the functional derivatives of a broad class

of dynamic function-valued models to solve for the linearized dynamics and responses

of the state variables of those models to endogenous and exogenous changes.
6For models as simple as in 1.1, it is possible to characterize the behavior without approximations:

the random linear operator model generalizes the random coefficients model to infinite dimensions,
and has been analyzed in Skorohod (1984).
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1.3 Characterization of Equilibrium Solution

While simple models with a high degree of structure may have linear approximations

to solutions which can be found easily by heuristic methods, for larger or more com-

plicated systems, and especially those where components are mutually determined,

a more systematic approach is required. Fortunately, the steps involved in finding

a linear solution may be described explicitly and so reduced to an algorithm which

automates construction. The idea behind the method is to use a decomposition of

the equilibrium conditions into components which may be solved separately and re-

cursively, by taking a component whose evolution may be expressed as a function of

past variables and a component which is solved by iterating forward expectations of

future variables. While in some models, the components which are solved by looking

backwards and the components which are solved by looking forwards may be identi-

fied with separate variables in the system, this is not true in general. Instead, this

separation must be determined endogenously in such a way that initial and end-point

conditions of the system are satisfied. What this often consists of is the requirement

that some choice variables or other endogenous variables must be chosen to affect the

expected evolution of other variables so that they satisfy an endpoint condition.

This is the source of the logic behind the cross-equation restrictions implied by

many classical rational expectations models: the path of the endogenous variables

must be determined jointly, and so expectations regarding one variable possibly far

in the future may cause another variable to move far in advance. For example, in the

Krugman (1979) model of balance-of-payments crises (and more recent models of the

same), foreign exchange investor behavior is tied down by expected future optimality

conditions at the point when the sovereign runs out of reserves. In the Dornbusch

(1976) overshooting model, the nominal exchange rate follows a nonmonotonic path

to ensure consistency with both short run price rigidity and a long run purchasing

power parity anchor. In infinite-horizon settings, the role of an end-point condition
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which coordinates expectations is played by analogous long-run optimality or consis-

tency conditions. For example, in the fiscal theory of the price level, the price adjusts

to ensure consistency of long run expectations of the government budget deficit. Most

commonly (at least in real models: see Cochrane (2011) for a discussion of compli-

cations in nominal models), long-run behavior is determined by a condition, such

as transversality, which is satisfied when variables follow a dynamic path which is

stationarity. While many types of long run restrictions are possible in models with

function-valued state variables, we will provide an algorithm for this most common

case, in which the specified model takes recursive form over an infinite horizon and

endpoint conditions require (or permit) a stationary solution. Although some modi-

fication is possible, including requiring asymptotic convergence (or slow divergence)

at a particular rate possibly above or below 1, due to the infinite-dimensional nature

of the parameter space, arbitrary endpoint conditions introduce substantial compli-

cations and so these will not be discussed further.

The requirement that it is possible to separate into solvable components also

imposes one more technical limitation: to ensure orthogonality of projections, in

what follows, we specialize from the setting of arbitrary separable Banach spaces

to require all variables to live on separable Hilbert spaces: H
1

= Hx ⇥ Hy and H
2

replace B
1

= Bx ⇥ By and B
2

, respectively. This will also be helpful in the numerical

implementation. For models defined on spaces which can be densely embedded into

a Hilbert space, it is often possible to extend the derivatives to the full Hilbert space

by completion. However, norm convergence results must then be taken with respect

to the Hilbert space norm.

For an economic model with recursive solution which is differentiable and generates

a stationary stochastic process, we describe conditions that the functional derivatives

of the solution operators g(.) and h(.) must satisfy, which will allow these derivatives

to be calculated numerically.
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Let the equilibrium conditions for the model of interest be given by 1.3 on page 13

G(x, �) := EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0

for all x, � and assume G(x, �) is Fréchet differentiable with respect to x, �.

Take the derivative with respect to x (evaluated at (x⇤, x⇤, y⇤, y⇤, 0)) to obtain

Fx + Fx0hx + Fygx + Fy0gxhx = 0

In matrix form


Fx0 Fy0

�
2

64
I 0

0 gx

3

75

2

64
hx

hx

3

75 = �


Fx Fy

�
2

64
I

gx

3

75 (1.5)

Define A =


Fx0 Fy0

�
, B = �


Fx Fy

�
mapping H

1

:= Hx ⇥Hy ! H
2

.

We seek to partially characterize the policy operators h(x, �) and g(x, �) by solving

for their first derivatives with respect to the ‘predetermined’ state variable x, hx and

gx. Written as

A

2

64
I 0

0 gx

3

75

2

64
hx

hx

3

75 = B

2

64
I

gx

3

75

this can be seen as an equation in terms of a pair of linear operators (B, A) which

may be solved in terms of a joint decomposition of the pair. In general, multiple

solutions to this system are possible: however, additional considerations provide some

constraint as to the nature of acceptable solutions. In particular, conditions such

as transversality conditions in optimization and No Ponzi Game conditions often

rule out equilibria in which (some) state variables explode. More generally, a local

solution method is attractive largely to the extent that the system remains with high
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probability in a neighborhood of the state around which the linearization applies.

For these reasons, we seek a solution to these equilibrium conditions which also

induces stable, or stationary, dynamics. For finite-dimensional deterministic dynam-

ical systems, sufficient conditions for the local stability around the steady state may

be characterized by the eigenvalues of the linearized transition rule: in discrete time,

eigenvalues less than one in modulus imply stability, in continuous time, eigenval-

ues must have real part less than 0. For infinite-dimensional dynamical systems,

analogous conditions apply (see Gohberg et al. (1990, Ch. IV.3)). For rational ex-

pectations models characterized in terms of expectations, dynamics of state variables

may be characterized not only by past values, but also by expectations of future

values, and, in particular, certain variables may be allowed to ‘jump,’ which is to

say that in response to a stochastic change in the current state, some variables may

change discontinuously in order to satisfy the equilibrium conditions. As a result, sta-

bility conditions for this class of models differ from those for deterministic dynamical

systems. Most notably, they may exhibit ‘saddle-path stability,’ in which the system

evolves toward the steady state only along a lower-dimensional manifold and so only a

(possibly null) subset of eigenvalues satisfy the stability conditions. A stable solution

exists in such a case if the jump variables may adjust to ensure that the system stays

on this stable manifold.

In the finite-dimensional case, stable solutions to this matrix pair equation may

be characterized in terms of the Jordan decomposition of the pair, as in the seminal

work of Blanchard & Kahn (1980), or in the case where singularity may be possible

or numerical stability is desired, in terms of the generalized Schur decomposition as

in Klein (2000). In the infinite-dimensional case, one may, under certain regularity

conditions, apply analogues of these decompositions. To provide robustness to singu-

larity and ensure numerical stability, this paper applies an analogue of the generalized

Schur decomposition. As such a decomposition appears to be absent from the litera-
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ture, Appendix A provides a detailed characterization and a proof of existence under

a mild set of regularity conditions. The key idea of the proof is to use the generalized

resolvent operator to construct potentially non-orthogonal subspaces on which the

operator pair acts corresponding to elements of the spectrum outside and inside the

unit circle, and then show that orthogonalizing the subspaces to ensure unitarity of

the transform preserves the spectrum.

For the purpose of characterizing the equilibrium conditions of the model, the fol-

lowing description suffices. If (B, A) satisfy the regularity conditions of Lemma(.9) in

Appendix A, among which are that (B, A) are bounded operators and that (B, A) are

�-regular on the unit circle: �A�B has bounded inverse for any complex � satisfying

|�| = 1, i.e. the unit circle is in the resolvent set, there exists a decomposition

(B, A) = (Q⇤TU,Q⇤SU)

in which U and Q are unitary operators and S and T may be decomposed as

(T, S) =

0

B@

2

64
T

11

T
12

0 T
22

3

75 ,

2

64
S

11

S
12

0 S
22

3

75

1

CA

conformable with the decomposition Q =

2

64
Q

1

Q
2

3

75 and U =

2

64
U

1

U
2

3

75 such that the

images of U⇤
1

and U⇤
2

respectively decompose H
1

into two orthogonal subspaces H
11

and H
12

and the spectrum of (T
11

, S
11

) lies inside the unit circle, so S
11

has bounded

inverse. We may further decompose U
1

, U
2

by considering their actions on Hy and

Hx. Write U
11

:= U
1

'X , U
12

:= U
1

'Y , U
21

:= U
2

'X , U
22

:= U
2

'Y where 'X
: Hx !

Hx ⇥ {0} ✓ H1

and 'Y
: Hy ! {0}⇥Hy ✓ H1

are imbeddings.

Remark. The assumption of boundedness of the operator pair is not fundamental.

Rather, it reflects the choice of space on which the operators are defined. See Kur-
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batova (2009) for a way in which to define the domain on which the pair acts so that

boundedness holds and the above decomposition may be constructed for operator

pairs unbounded with respect to the original choice of space HX by restriction to a

subspace. The use of potentially unbounded operators may be useful if equilibrium

conditions are defined in terms of differential operators, as is common in continu-

ous time versions of the models studied in this paper, as in Achdou et al. (2013).

In discrete time, the conditions of interest are generally defined in terms of integral

equations and so boundedness usually holds without restrictions.

In contrast, �-regularity imposes nontrivial restrictions. By requiring existence of

a bounded operator with bounded inverse between the two spaces, it requires that

HX and HY be isomorphic, reflecting the traditional condition that to have a unique

set of solutions, it is necessary that there be as many equations as unknowns. In

addition to ruling out unit roots, invertibility on the unit circle also rules out long

memory behavior. To see this, note that because the resolvent set of an operator pair

is open, invertibility must also hold in an open neighborhood of the unit circle, and so

it cannot be the case that the spectrum has a limit point in the unit circle, as occurs

in certain processes with long memory.

In terms of classes of operators which this assumption excludes, it rules out the

presence of a continuous spectrum in the neighborhood of the unit circle. A prominent

example of an operator pair with a continuous spectrum is an identity paired with a

multiplication operator (which can arise as the functional derivative of a composition

operator), i.e. (F, I) with F [g(x)] = f(x)·g(x), which has continuous spectrum taking

all values attained by f(x). If |f(x)| has a limit point equal to 1, this operator pair is

not �-regular. In this case a spectral decomposition can be constructed analytically,

and a solution will exist with long memory or unit root behavior (depending on the

behavior of f(x) as it approaches 1), but for general models which fail to be �-

regular with no closed form spectral decomposition, numerical approximations of the
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decomposition based on projection methods will be highly unstable.

The generalized Schur decomposition allows us to rewrite our decomposition as

Q⇤

2

64
S

11

S
12

0 S
22

3

75

2

64
U

11

U
12

U
21

U
22

3

75

2

64
I 0

0 gx

3

75

2

64
hx

hx

3

75

= Q⇤

2

64
T

11

T
12

0 T
22

3

75

2

64
U

11

U
12

U
21

U
22

3

75

2

64
I

gx

3

75 (1.6)

Unitarity of Q allows it to cancel on both sides, leaving, after simplification,

2

64
S

11

S
12

0 S
22

3

75

2

64
(U

11

+ U
12

gx)hx

(U
21

+ U
22

gx)hx

3

75 =

2

64
T

11

T
12

0 T
22

3

75

2

64
U

11

+ U
12

gx

U
21

+ U
22

gx

3

75 .

To find a stable solution, first solve for gx, which determines the jump variables

in terms of the predetermined variables, and then use this to find the value of hx. To

ensure that the second line holds trivially, it is sufficient to find gx : Hx ! Hy such

that

U
21

+ U
22

gx = 0 (1.7)

always. In principle, there may be many solutions, one solution, or no solution to

this problem. In the case that U
22

U⇤
22

has bounded inverse on the space Im(U
2

), at

least one solution exists, given by what is referred to in numerical analysis as the

‘minimum norm solution’ (Golub & van Loan, 1996, Ch. 4) to the linear equation

(1.7),

gx = �U⇤
22

(U
22

U⇤
22

)

�1U
21

. (1.8)

It is worth noting how the condition that U
22

U⇤
22

has bounded inverse relates to the

eigenvalue criteria in Blanchard & Kahn (1980) and subsequent rational expectations
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solution procedures. The existence of a bounded inverse implies U
22

U⇤
22

is bijective,

and so U
22

is surjective onto Im(U
2

), which is mapped isometrically to H
12

by the

continuous and invertible linear transformation U⇤
2

. Therefore, there exists a linear

surjection from Hy ! H
12

. In finite dimensions, this requires that the dimension of

the space of ‘jump variables’ y is at least as large as the dimension of the eigenspace

corresponding to the ‘unstable’ generalized eigenvalues. Note however that in infinite

dimensions, both of these spaces are infinite dimensional and the spectrum is generally

uncountable, so this criterion cannot be expressed in terms of a relationship between

the ‘number of eigenvalues greater than one’ and the ‘number of jump variables’.

There is also an analogous condition characterizing uniqueness of the solution.

Consider the case in which U
22

has nontrivial null space. Then if gx is a solution

and g̃ is an operator whose range is a subset of Ker U
22

, gx + g̃ is also satisfies

U
21

+ U
22

(gx + g̃) = 0. Thus, a solution is unique only if U
22

has trivial null space.

Formally, a solution is unique if and only if U
22

is Hy-complete: 8y 2 Hy, U
22

y = 0

implies y = 0. If U
22

is complete and surjective, then it is bijective, and so, by the

bounded inverse theorem has a bounded inverse and so

gx = �U
22

�1U
21

(1.9)

is the unique solution.7 In finite dimensions, a necessary condition for a linear oper-

ator to have trivial null space is that the domain and range spaces are of the same

dimension. This therefore corresponds to the case in which the number of jump vari-

ables and unstable eigenvalues is exactly equal. Note that while there is a burgeoning

literature on the characterization and implications of completeness in econometric

models (see, e.g., Andrews (2011)), this is generally in the context of operators which

are not surjective and do not have bounded inverse.
7If you don’t like the axiom of choice, this will still be the unique solution but may or may not

be a bounded operator.
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If U
22

is surjective but not complete, the system is said to be underdetermined, and

there may be many solutions, of which �U⇤
22

(U
22

U⇤
22

)

�1U
21

, the minimum norm solu-

tion is one. In this case, any solution to the system must be equal to�U⇤
22

(U
22

U⇤
22

)

�1U
21

plus an operator g̃ whose range is in the kernel of U
22

, which is the complement

of the range of U⇤
22

, and so for all x 2 Hx k � U⇤
22

(U
22

U⇤
22

)

�1U
21

x + g̃xk = k �
U⇤

22

(U
22

U⇤
22

)

�1U
21

xk + kg̃xk � k � U⇤
22

(U
22

U⇤
22

)

�1U
21

xk hence the description ‘mini-

mum norm’. This corresponds to the case in finite dimensions in which there are more

jump variables than unstable eigenvalues. In this case, one may calculate a canonical

solution with minimum norm, but there are also a continuum of other solutions in

which arbitrary terms may be added in the eigenspaces corresponding to the jump

variables so long as these terms are sent to zero by the expectation operator. This

situation corresponds to the partial identification result when completeness fails in

nonparametric instrumental variables estimation described in Santos (2012). While

indeterminacy in the finite-dimensional case has received extensive study, for brevity

and to avoid technical complications, I will consider only cases in which the solution

is unique, in which case U�1

22

is bounded and well defined.

Given a solution for gx, the evolution equation for the predetermined variables

may be expressed in terms of this solution. Imposing 1.7, the equilibrium conditions

hold if S
11

(U
11

+ U
12

gx)hx = T
11

(U
11

+ U
12

gx). Since S
11

has bounded inverse by

construction, this gives

hx = (U
11

+ U
12

gx)
�1S�1

11

T
11

(U
11

+ U
12

gx) (1.10)

is a solution so long as U
11

+ U
12

gx has bounded inverse. Moreover, this operator is

similar to S�1

11

T
11

and so has identical spectrum. In particular, by the construction

of S
11

and T
11

the spectrum of this operator is inside the complex unit circle. So, by

Gohberg et al. (1990, Thm IV.3.1), the difference equation xt+1

= hxxt, x
0

= x 2 Hx
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has a unique solution for any given x, given by xt = (hx)
tx, which converges to 0.

Thus, we say that hx is a stable solution. Moreover, under these conditions, Bosq

(2000, Thm 3.1) implies that the Hilbert AR(1) functional linear process given by

xt+1

= hXxt + ⇠t, where ⇠t is a Hx random element uncorrelated over t has a unique

covariance stationary solution, and so we are justified in referring to hx as a stationary

solution.

Note that existence of a solution to the operator equation (1.5) is a necessary

condition for the existence of a differentiable solution consistent with the equilibrium

conditions of the model but is not sufficient. For an overview of high level conditions

that might be used to ensure existence of a solution, see Appendix B.

1.4 Algorithm

Having a formula for the functional derivatives of the policy operators in terms of the

functional derivatives of the equilibrium conditions is not sufficient to implement the

formula unless the components of that formula, defined in terms of the generalized

Schur decomposition can be found. While there are some cases where this can be done

analytically, these require a high degree of structure to be imposed, often requiring, for

example, the model to take a partial equilibrium structure where aggregate variables

are taken as exogenous, or the opposite, require individual decisions not to depend

on the aggregate state. Beyond these and some other idiosyncratic cases, a numerical

procedure is needed to construct the solution. This can be done using projection of

the equilibrium conditions onto a finite set of basis functions, so long as the model

takes a structure where the approximation error this introduces can be controlled.

Conditions under which this holds can often be verified easily, and in particular hold

for the economic geography model evaluated in Section 5.
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1.4.1 Cases in Which a Known Decomposition Exists

To compute the functional derivatives of the equilibrium policy operators of a rational

expectations model with Hilbert-valued states, it is generally necessary to separate

the state space into forward looking and backward-looking, or ’unstable’ and ’stable’

components. In some special cases, these components correspond to known or ana-

lytically identifiable state variables. This generally requires that certain derivatives

equal 0: a type of exclusion restriction which ensures that backward-looking variables

are not influenced by forward looking variables or vice versa. Exclusion restrictions

of these sort are prevalent in partial equilibrium models, in which a forward looking

decision may be made given a persistent and purely exogenous state variable. For ex-

ample, if the feedback between population and economic activity were to be removed

from the geography model described in Chapter 2, the migration decision problem

given an exogenous distribution of wages would fall into this class. Similar exclusion

restrictions may also arise in cases where the equilibrium environment and decision

problem are carefully tailored so that a persistent backward looking state has no im-

pact on forward looking decisions which do affect the state. A special case of this

structure is when decision making is purely myopic, either due to a carefully tailored

incentive structure or due to behavioral constraints on the decision makers. Models

with these kinds of exclusion restrictions may be described as triangular. While the

restrictions required to ensure that such a condition holds are often stringent, the

computational and analytical tractability that they allow makes them an important

special case.

Let us consider two kinds of triangular models, roughly corresponding to the cases

described above where forward-looking decisions are not influenced by a persistent

state and where a persistent state is not influenced by a forward looking decision.

I will call such cases upper triangular and lower triangular, respectively, for reasons

that will become apparent. In the upper triangular case, the partial derivative of
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the equilibrium conditions with respect to the predetermined state variables x is 0 in

the equations describing the forward looking decision. This can occur in models with

myopic decision making, either due to behavioral constraints or due to a structure of

preferences, production or technology designed to produce the knife-edge condition

that the optimal decision is independent of the state of the world. In the notation

from above, in such cases, the derivatives may be decomposed as

(B, A) = [�Fx � Fy, Fx0 Fy0 ] =

2

64
T

11

T
12

0 T
22

,
S

11

S
12

0 S
22

3

75

without any (additional) unitary transformation, so Q = U = I, and the forward

and backward looking state variables may be identified with y and x, respectively.

Applying previous results on the derivatives of the policy functions, obtain gx = 0

and hx = S�1

11

T
11

. This says that, consistent with the intuition, the forward looking

state has 0 derivative with respect to the persistent backward-looking one, and the

backward looking state evolves autonomously. This is a locally stable solution if the

spectrum of S�1

11

T
11

lies within the unit circle.

The lower triangular case occurs when the derivative of the equilibrium conditions

with respect to the jump state variable y is 0 in the equations describing the backward

looking persistent state variable. This can occur in partial equilibrium or small open

economy type settings, in which aggregate states or distributions are determined

completely exogenously. In this case, the derivatives are decomposed as

(B, A) = [�Fx � Fy, Fx0 Fy0 ] =

2

64
T

11

0

T
21

T
22

,
S

11

0

S
21

S
22

3

75

without any unitary transform, so again y and x may be identified with forward and

backward-looking state variables. In this case, a slightly different calculation may be
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applied to obtain the derivatives of the policy operators. Applying the condition

2

64
S

11

0

S
21

S
22

3

75

2

64
hx

gxhx

3

75 =

2

64
T

11

0

T
21

T
22

3

75

2

64
I

gx

3

75

obtain the solution hx = S�1

11

T
11

, which is to say that x evolves according to a law of

motion which does not depend on the forward looking jump state y. The derivative

gx of the policy function giving y in terms of x, satisfies the equation

T
22

gx = S
21

hx � T
21

+ S
22

gxhx

which may either be expressed recursively as an infinite sum, or by treating gx as an el-

ement of the Banach space of bounded linear operators, in terms the inverse of the lin-

ear operator T
22

[.]�S
22

[.]S�1

11

T
11

, if it exists, as gx = (T
22

[.]�S
22

[.]S�1

11

T
11

)

�1

(S
21

S�1

11

T
11

�
T

21

). 8 While neither of these formulas is particularly straightforward to apply, often

inverses may be computable in closed form, allowing simple evaluation of the effect

of a state variable of interest on an intertemporal decision problem.

1.4.2 Numerical Evaluation by Projection

In practice, one often finds that the restrictions required to ensure that a system

takes triangular form are not economically sensible. Especially in general equilib-

rium problems, forward looking decisions both influence and are influenced by the

evolution of persistent states. In such cases, it becomes necessary to apply a method

which can separate the forward and backward looking subspaces under general con-

ditions. Unfortunately, closed form solutions are rarely available for the generalized

Schur decomposition of systems of operator equations, and one must instead turn to
8If we may use the familiar notation vec(g

x

) to denote the map from the space of operators to
an isomorphic Banach space, viewed as a vector space, we may write this formula suggestively as
vec(g

x

) = (I⌦T22�(S�1
11 T11)⇤⌦S22)�1vec(S21S

�1
11 T11�T21), which gives the solution in terms of the

finite-dimensional vec operator and the Kronecker product when H
x

and H
y

are finite dimensional.
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numerics. For an algorithm to be useful, it must take data which are computable

from representations of the derivatives of the equilibrium conditions and output an

approximate decomposition. This suggests application of methods based on sam-

pling, where the derivative operators are approximated by finite-dimensional objects

to which a decomposition may be applied numerically.

A particularly simple way to perform this approximation is to approximate any

infinite-dimensional Hilbert space by an increasing sequence of subspaces, possibly

spanned by a standard set of basis functions. On such spaces, the derivative operators

of interest are finite-dimensional matrices. As the number of basis functions grows,

representation of any function in the space becomes increasingly accurate, and one

may hope that at a sufficient level of detail, the finite-dimensional system accurately

approximates the infinite-dimensional one. If this is the case, it may be possible to

simply apply solution algorithms for finite-dimensional linear rational expectations

algorithms to produce finite-dimensional approximations of the policy functions.

While intuitively appealing, there is an important step missing in the above logic.

In order for the finite-dimensional solutions to be accurate, at least asymptotically,

it is necessary that when the input of the finite-dimensional rational expectation

algorithm is sufficiently close to the truth, that the output also be close: the solution

must be continuous with respect to some topology. It turns out that the difficult

step to show here is the continuity of the generalized Schur decomposition. While the

generalized Schur decomposition is known to be stable in finite dimensions (Golub

& Van Loan, 1996), only limited results are available for the infinite-dimensional

case. In infinite dimensions, different topologies are not equivalent, and so one must

choose a topology with respect to which the approximation converges. The results

of Stewart (1973) ensuring continuity of the generalized Schur subspaces and the

Rayleigh components ((Sij, Tij) in previous notation) apply in infinite-dimensional

spaces, demonstrating, under certain conditions, the continuity of these objects with
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respect to the Hilbert-Schmidt norm. In infinite dimensions, the use of this norm

imposes unduly strong summability conditions on most operators of interest, to the

point that many operators used in practice, such as the identity, do not have finite

norm. As a result, in the appendix, I have demonstrated a generalization of this result

to the operator norm. If a sampling procedure converges to the true derivatives in

operator norm, the generalized Schur decomposition will also converge in the same

norm.

While reassuring, continuity in operator norm is in fact of limited applicability

without some important auxiliary hypotheses. In particular, it is known that a finite-

dimensional matrix may approximate an infinite-dimensional operator in operator

norm only if that operator is compact. This presents something of a difficulty, as es-

sentially no economic models with function-valued states have derivatives which are

compact operators. However, there exists a limited but far from trivial subclass of

models in which it is nevertheless possible to construct the generalized Schur decom-

position of a set of operators which consistently approximates the true equilibrium

derivatives in operator norm, and so to which the continuity result applies. I refer to

models which satisfy this condition as asymptotically diagonal.

Definition 1.3. The operator pair (B, A) is asymptotically diagonal if there exists

a known linear isometry such that H
1

is isometrically isomorphic to H
2

, and the

representation of the operator pair with respect to this isometry (which will also be

denoted (B, A)) satisfies the decomposition (B, A) = (BI , AI) + (BC , AC) such that

BC and AC are compact and there exist known finite partitions of Hx,Hy ⇢ H1

⇠
=

H
2

into orthogonal subspaces {Hj}J
j=1

conformable with the partition into Hx and Hy,

usually corresponding to variables making up X and Y , such that for each pair

(i, j) 2 {1 . . . J}2, AI
ij

:= ProjH
i

AIProjH
j

and BI
ij

:= ProjH
i

BIProjH
j

satisfy AI
ij

and BI
ij

are each either equal either to the zero operator or to a scalar multiple of

the identity Iij, where Iij is defined for i = j as the identity operator on Hi and for
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i 6= j is defined as the identity from Hj to Hi if Hi
⇠
=

Hj.

Informally, this statement says that asymptotically diagonal systems can be bro-

ken up into a compact part and a part for which all subcomponents are equal to the

identity. The typical form for an asymptotically diagonal operator pair is a set of

square block operators acting on a space of J functions, where each block contains

an identity operator, a compact operator, or a sum of a compact operator and an

identity operator. For example if J = 2, (B, A) may take the form

0
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I
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I
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I
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I
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I
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+ C
5

c
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I
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+ C
6

c
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I
21

+ C
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c
8

I
22

+ C
8

3

75

1

CA (1.11)

where c
1

through c
8

are real scalars (possibly 0) and C
1

through C
8

are compact oper-

ators, for example integral operators of the form
´

K(x, z)[f(z)]dz for some bounded

smooth function K(x, z) : [0, 1)

2 ! R1 in the case where Hj is L2

[0, 1). Here

(BC , AC) collects the C components, and (BI , AI) collects the cI components.

Asymptotic diagonality ensures that the model has a tractable form ‘up to a

compact perturbation.’ In particular, it can be seen that (BI , AI) is block diagonal

with respect to any orthonormal basis of H
1

conformable with the partition into

subspaces {Hj}J
j=1

with blocks which are J-dimensional square pencils which are,

importantly, all identical. For example, for a pair in the form of (1.11), for any

orthonormal basis {�i1}1i=1

of Hj=1

, which must have a corresponding basis {�i2}1i=1

for Hj=2

if Hj=1

⇠
=

Hj=2

, (if not, the off-diagonal components c
2

, c
3

, c
6

, and c
7

must

all be 0, as no identity can be defined), the action of (BI , AI) on the coefficients

corresponding to functions (�i1,�i2) is given by the pair of 2⇥ 2 matrices

0

B@

2

64
c
1

c
2

c
3

c
4

3

75 ,

2

64
c
5

c
6

c
7

c
8

3

75

1

CA
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for any i = 1 . . .1. This provides a representation of (BI , AI) as block diagonal

with respect to the the orthonormal basis {{eij}1i=1

}2

j=1

of H = Hj=1

⇥ Hj=2

with

ei1 = (�i1,0), ei2 = (0,�i2), with blocks corresponding to pairs identified by common

index i. As a result, to construct the generalized Schur decomposition of (BI , AI),

it suffices to calculate a single J-dimensional decomposition of the matrix pencil

representing any particular block and to concatenate the identical and orthogonal

blocks.

Generally speaking, the isometry condition will be fulfilled by any model which

uniquely determines an equilibrium, as it generalizes the familiar requirement that a

model have an identical number of equations and unknowns, so the space into which

the equilibrium conditions map will generally have a canonical isomorphism to the

space of unknown states. This holds similarly for the J subspaces, which usually

correspond to interpretable variables in the context of the model, with isomorphisms

between spaces of variables likewise defined canonically. For example, in the example

model of economic geography in Chapter 2, the distribution of wages and the dis-

tribution of amenities may be defined as functions on the same space defined in the

same units (such as dollars, or utils).

The use of a restriction of this kind is that identity components are common com-

ponents of the derivative operators of many models, because many conditions take the

form of defining a variable or assigning it a value, but are not compact, and so cannot

be approximated directly by finite-dimensional approximations. The remainder of

(BI , AI) after projection onto any subspace does not go to 0, but because it takes a

tractable diagonal form, it is known. In contrast, for the compact component, the

remainder when projecting onto an increasing sequence of subspaces does go to 0 and

so is asymptotically negligible. By combining these two components, it is possible

to use a finite-dimensional projection to approximate the operator pencil on a finite-

dimensional subspace and leave a remainder on the orthogonal complement space a
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which is known up to an asymptotically negligible perturbation. In this way, one can

use a finite set of computations to compute a generalized Schur decomposition corre-

sponding to an operator pencil which is close in norm to the true infinite-dimensional

pencil, and so by the continuity in norm of the decomposition, yields a decomposition

which is close to the true one.

The disadvantage of such a restriction is that requiring all components of the

derivatives to either be compact or to be composed of identity operators restricts the

functional forms of allowable models, potentially in ways which rule out economically

meaningful effects. For example, in a model with a distribution of characteristics

which evolve independently across individuals driven by a Markov process, the dis-

tribution is a state variable and its evolution is described by an adjoint Markov

operator. When the conditional density of the process given any initial state is suffi-

ciently smooth, the operator mapping the density today to the density tomorrow will

be compact and the density tomorrow enters via an identity. However, when there is

a point mass in the conditional density, the transition operator need not be compact.

Point masses can describe inertia, such as that induced by fixed costs (Stokey, 2008)

or indexation, or mass movement along a discontinuous path. Similarly, decision

problems where the object chosen is a function, ubiquitous in economics in the form

of best-response policies, can yield first order conditions in which the function which

is a choice variable enters into a nonlinear utility function, resulting in a functional

derivative which is a multiplication operator, which may be noncompact. In some

cases, it may be possible to transform the condition into one where the noncompact

operator is an identity by applying its inverse to the equation, but this can eliminate

only one non-identity operator from the equation. In the case where this decision

problem over functions faces a state variable which is also a function, as in games or

contracting problems, or government choosing nonlinear policies over a continuum of

agents, goods, or locations, there may be multiple nonlinear operators in the decision
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problem which may prevent reducing to an asymptotically diagonal form.

When possible, applying an invertible transformation to both sides of an equi-

librium equation can ensure that the asymptotically diagonal form holds without

making changes to the model itself. In other cases, it may be possible to construct

a modified model which is close to the original but which satisfies the condition that

its derivatives are asymptotically diagonal. For example, if compactness fails due to

a law of motion with discrete jumps to a fixed value, creating a discontinuity in the

distribution at that value, the discontinuity may be removed if the discrete jump is

accompanied by a small amount of continuously distributed noise, thereby smooth-

ing out the conditional distribution, though the shape of the resulting distribution

may be very close if the noise is small enough. Similarly, discrete actions induced

by hard constraints can be made to vary continuously by replacing hard constraints

with smooth but sharply growing penalties which induce similar but smooth behavior.

These sorts of smoothing transformations are commonly used to employ numerical

methods which rely on smoothness (see Den Haan (2010) for commentary), though

it should be noted that these changes in the model may not be innocuous. While

the resulting behavior at the individual level may be extremely similar, the resulting

operator describing the law of motion for the distribution across individuals, which

is now compact, as desired, must be far away from the true operator for some input

functions. As a result, this approach does not guarantee that the resulting aggre-

gate behavior will be close. Instead, it provides a solution to a different model with

similar individual level behavior. However, if the additional noise or smoothing of

the constraint is empirically justified, this is not necessarily a concern. For example,

the extreme value heterogeneity in location preference in the model of migration de-

cisions not only ensures a smooth law of motion for the population distribution, it

also reflects the believable feature that there is idiosyncratic preference heterogeneity

which ensures that individuals do not all move to the same place.
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When the derivatives of the equilibrium conditions of a model are asymptotically

diagonal (and a unique stable equilibrium exists local to the steady state), computa-

tion of the first order approximation of the policy operators is both straightforward

and computationally fast, in the sense that a consistent approximation can be com-

puted to any desired precision in time polynomial in the number of basis functions

used in the approximation. The procedure consists of projecting the equilibrium

derivative operators onto a finite-dimensional orthogonal subspace, computing the

policy operators on that subspace by applying directly a standard first order ra-

tional expectations solution algorithm for finite-dimensional models, and computing

the policy operator on the orthogonal complement of that subspace analytically us-

ing (BI , AI). The operator norm precision of the resulting approximation is then

asymptotically of no higher order than the operator norm error in the projection

approximation of (BC , AC). While compactness alone ensures only that this projec-

tion error goes to 0 as the number of basis functions increases, when the compact

component takes the form of integral operators
´

K(x, z)[f(z)]dz, mild smoothness

conditions (or other limited complexity conditions) on the kernel, can be used to

ensure a rate of convergence. Moreover, in the case where projections cannot be cal-

culated analytically, for example because the kernel function can only be accessed by

point evaluation and so integrals must be computed approximately by quadrature,

similar smoothness conditions ensure that the additional error induced is controllable.

As a very wide variety of schemes for approximating such an operator may be

applied, I first provide a general purpose bound in terms of operator norm error, then

offer an example of a set of conditions and an approximation scheme which ensure that

this bound goes to 0. Specifically, under a Hölder continuity and compact support

condition on the kernel, I demonstrate convergence rates for a Coiflet representation

and 1-point quadrature scheme derived from Beylkin et al. (1991) which justify the

high speed and accuracy that this method has exhibited in numerical experimenta-
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tion relative to a wide variety of other basis function choices and quadrature schemes.

Results in Beylkin et al. (1991) may easily be used to extend to the case of singular

kernels and other wavelet classes. One particular alternative which may be attrac-

tive in some cases is to use an operator calibrated to data. In this case, plugging in

any matrix-valued operator norm consistent estimator (as in Guillas (2001) for func-

tional autoregressions, or Park & Qian (2012) or Benatia et al. (2015) for functional

regression) produces a consistent estimator of the policy functions.

Formally, sufficient conditions for consistent approximation are given by

(i) (B, A) H
1

! H
2

is an asymptotically diagonal pair of bounded operators,

�-regular with respect to closed Cauchy curve � (i.e., per Definition (.1), �A � B

is invertible for all � in a closed curve � ⇢ C1 separating the extended complex

plane into an interior and exterior subsets), with generalized Schur decomposition

with respect to � given by

(B, A) = [Q⇤
1

, Q⇤
2

]

2

64
T

11

T
12

0 T
22

,
S

11

S
12

0 S
22

3

75

2

64
U

1

U
2

3

75

(ii) dif(
T

11

S
11

T
22

S
22

) > 0, where the dif operator is defined in 8 on page 181 in Appendix

B as a measure of continuity of the generalized Schur decomposition with respect to

perturbations (iii) U
22

= U
2

'X is invertible

These conditions on the derivatives of the model are not entirely general but

apply to fairly broad classes of models. As mentioned before, asymptotic diagonality

rules out certain classes of models which display excessive ‘frequency mixing’. The

general property of operators which this rules out is a transfer of energy between

frequencies which fails to dissipate as frequency increases to infinity. In these cases,

input functions with a high degree of regularity are passed to outputs which may

be irregular, impeding the ability to represent the system uniformly in time with
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respect to classes of regular functions which can be well approximated by standard

function approximation. This transfer of energy to higher and higher frequencies is

commonly described in models of physical systems as an aspect of (weak) turbulence,

and generally requires numerical methods different from those described here. �-

regularity ensures that forward and backward looking components of the system can

be distinguished. In the typical case where � is the complex unit circle, it rules out

unit roots and continuous spectra around unity, and so imposes some restriction on

the time series properties of the systems which can be analyzed by this method.

Condition (ii) on the dif operator of the pair similarly imposes that the forward

and backward looking components are well-separated, ensuring their continuity with

respect to small perturbations in the operators: see Appendix A.2 for an exact def-

inition and further discussion. Heuristically speaking, the dif constant is a measure

of the separation between the forward and backward subspaces which depends on

the spectral gap between the subspaces and the degree of nonnormality (or deviation

from a diagonalizable pair) of the operator pair. In the case where the operator pair

(B, A) is diagonalizable, it is equal to the minimum distance between the spectra of

(T
11

, S
11

) and (T
22

, S
22

) and so positivity is implied by �-regularity. �-regularity is

also sufficient in the case that (B, A) is finite dimensional (see Stewart & Sun (1990)

Thm VI.1.11) or in the case in which either B or A is invertible, in which case it

follows from the Sylvester-Rosenblum theorem for operators (Bhatia & Rosenthal,

1997), though the exact size will depend on the degree of nonnormality.9

Condition (iii) is necessary for existence and uniqueness of derivatives of a policy

function which are consistent with the equilibrium conditions: it ensures that there

is a correct model to be approximated.

To provide a consistent approximation, it is necessary to choose a sequence of
9I conjecture that there may exist an analogue of the Sylvester-Rosenblum theorem for the

operator defining the dif constant, in which case condition (ii) is entirely redundant. However,
the method of proof does not straightforwardly generalize.
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finite-dimensional orthogonal subspaces which converge to H. Generally these will

be defined as the closed linear span of an increasing sequence of functions in a set of

complete orthonormal bases of {Hj}J
j=1

, though orthonormality is mainly a compu-

tational and notational convenience. As one often does not have access to an exact

projection, it is sufficient to request a consistent approximation to one instead. For

consistency, we require approximations satisfying the following properties

(i) Let {⇡K
j

j }J
j=1

be J orthogonal projections onto Kj-dimensional orthogonal

subspaces of {Hj}J
j=1

respectively such that Im ⇡K
i

i
⇠
=

Im ⇡
K

j

j if Hi
⇠
=

Hj (i.e.,

⇡K
j and ⇡K

i

i map to subspaces which are identified of elements of the partition

which are themselves identified), and let ⇡K
=

PJ
j=1

⇡
K

j

j project onto the K =

PJ
j=1

Kj -dimensional union of these subspaces. Define (BK , AK
) := ⇡K

(B, A)⇡K ,

and (BK
C , AK

C ) := ⇡K
(BC , AC)⇡K . Let

max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
}  ⌘K

for some sequence ⌘K decreasing to 0 as K !1.

(ii) Let (

˜BK , ˜AK
) be a sequence of matrix approximations of (BK , AK

) on a Eu-

clidean space isomorphic to Im ⇡K satisfying

max{
��� ˜BK �BK

���
op

,
��� ˜AK � AK

���
op
}  ⇣K

for some sequence ⇣K decreasing to 0 as K !1.

In practice, as the J subspaces of H represent distinct functions used as state

variables (for example, a value function and a distribution over agents), these ap-

proximations are given by first choosing an appropriate complete series basis for

each function of interest and representing each function with respect to an increasing

number of terms in that series. The numerical representation of the operators with

respect to the series (

˜BK , ˜AK
) is then calculated by interpolation, quadrature, exact
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sampling in some special cases, or estimation. Note that we require only consistency

of the projections over (BC , AC). Both on and off the projected space (BI , AI) has

exact representation as a set of scalar multiples of identity matrices on Im ⇡K and as

identity operators on the orthogonal complement of that space.

Given a choice of spaces onto which to project and a consistent approximation

of the projected operators, we can define our approximate operators by calculating

policy operators g̃K
x , ˜hK

x and gK?
x , hK?

x from (B, A) separately on Im ⇡K and Ker ⇡K ,

respectively and composing them. We may define these operators as follows.

Denote the generalized Schur decomposition with respect to � of the finite-dimensional

matrix representation of (

˜BK , ˜AK
) as

[

˜Q⇤K
1

, ˜Q⇤K
2

]

2

64
˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

3

75

2

64
˜UK

11

˜UK
12

˜UK
21

˜UK
22

3

75 .

Note that because this is a finite-dimensional matrix pair, this may be calculated

in O(K3

) time by the QZ algorithm: see Golub & Van Loan (1996). Applying the

formulas for the policy operators to this restricted space, define g̃K
x = �(

˜UK
22

)

�1

˜UK
21

,

˜hK
x = (

˜UK
11

+

˜UK
12

g̃K
X )

�1

(

˜SK
11

)

�1

˜TK
11

(

˜UK
11

+

˜UK
12

g̃K
X ). These define an approximation of gx

and hx respectively on the space Im ⇡K .

As the restriction of the policy function to this space need not, in general, consis-

tently approximate the policy functions onH as a whole, we supplement by an approx-

imation on the orthogonal complement space, gK?
x , hK?

x . To do this, we approximate

by considering only (BI , AI) on this space: this is a reasonable approximation be-

cause for K large enough, the contribution of (BC , AC) on the remainder becomes

negligible. Consider a set of complete orthonormal bases of Hj, {eij}J
j=1

, i = 1 . . .1,

where esj and etk are identified if s = t and Hj
⇠
=

Hk. Then, by construction, for

all i, (BI , AI) maps the closure of their span Span{eij}J
j=1

to itself and moreover, the

representation of this map is identical for all i. Informally, (BI , AI) is (H-equivalent
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to by Parseval’s identity) a block diagonal matrix pair over this complete orthonormal

basis with identical J ⇥ J blocks. Further, because an identity matrix has identity

representation with respect to any choice of basis, we may choose a basis such that

{eij}J
j=1

, i = K + 1 . . .1 are a complete orthonormal basis of Ker ⇡K (these may

or may not be the remaining elements of an orthonormal basis the projection onto

the span of which defines ⇡K , though this representation is convenient). By the or-

thogonality of the blocks, it is sufficient to define the policy function separately on

each block. This can be done by applying the solution formula to any J-dimensional

block i, regarded as a pair of J ⇥ J matrices, (Bi
I , A

i
I). These have generalized Schur

decomposition

(Bi
I , A

i
I) = [Qi⇤

1

, Qi⇤
2

]

2

64
T i

11

T i
12

0 T i
22

,
Si

11

Si
12

0 Si
22

3

75

2

64
U i

11

U i
21

U i
12

U i
22

3

75

on each block i, where U i
11

and U i
21

acts on the J
1

elements contained inHx and U i
12

and

U i
22

act on the J�J
1

elements contained in Hy. The corresponding block of the policy

operators are given by gi
x = �(U i

22

)

�1U i
21

, hi
x = (U i

11

+U i
12

gi
x)
�1

(Si
11

)

�1T i
11

(U i
11

+U i
12

gi
x).

To define our approximation on the orthogonal complement of Im ⇡K , we simply

concatenate the blocks, giving sequential representations

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gi
x)(j�J1)k heik, [.]i eij

and

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij.

Note that since each block is identical, calculation of the policy function needs be

performed for only one representative block, with running time dominated by the QZ

algorithm, of order O(J3

) typically negligible.
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The approximation to the policy operators on H are given by gK := g̃K
x +gK?

x and

hK :=

˜hK
x + hK?

x . A summary of the steps leading to their construction is provided

as Algorithm 1. Under the conditions given, these approximations are consistent in

operator norm. We have the result

Theorem 1.1. Let (B, A) and their approximations (

˜BK , ˜AK
) satisfy Conditions

(1.4.2) and (1.4.2). Then kgK � gxkop ! 0 and khK � hxkop ! 0 as K ! 1.

In particular, there exists some ¯K and some constant C such that for K > ¯K,

kgK � gxkop  C(⇣K + ⌘K) and khK � hxkop  C(⇣K + ⌘K).

Proof. See Appendix.

The idea behind the consistency argument is to show that the generalized Schur

decomposition of the combined approximation on and off Im ⇡K converges in operator

norm and then apply perturbation theorems ensuring continuity in operator norm

for the Schur projectors and Rayleigh components. Then by applying orthogonality,

show that the policy functions corresponding to the generalized Schur decompositions

on and off Im ⇡K are equivalent to the policy functions corresponding to the Schur

decomposition of the approximate operator as a whole. The exact constant C and

¯K are both decreasing functions of the dif constant of (B, A). While the rate of

convergence is unaffected, for highly non-normal operators or those with a small gap

between the spectrum of the forward and backward looking components, the constant

on the rate may be large.

1.4.3 Implementation: Wavelet Transform

Overall, the computational effort needed to obtain ✏-close approximations is driven by

the rates ⌘K and ⇣K . If efficient (or exact) evaluation schemes are used, the projection

error ⌘K tends to dominate: this may not be the case if the value of the projection

coefficients is determined by estimation, in which case the accuracy of ⇣K is limited
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Algorithm 1 Construction of gK , hK

Inputs: An equilibrium operator F (x, y, x0, y0,�) satisfying Condition 1.4.2, Im ⇡K

a K-dimensional subspace satisfying Condition 1.4.2, and {{eij}J
j=1

}1i=K+1

a con-
formable orthonormal basis for the orthogonal complement of Im ⇡K

Output: gK , hK approximate functional derivatives of recursive solution with respect
to x

1. Compute steady state (x⇤, y⇤) s.t. F (x⇤, y⇤, x⇤, y⇤, 0) = 0

2. (B, A)  �� ⇥
Fx Fy

⇤
,
⇥

Fx0 Fy0
⇤�

Calculate functional derivatives at
steady state

3. Decompose (B, A) into (BI , AI) + (BC , AC) compact and identity components
as per Definition 1.3

4. Construct (

˜BK , ˜AK
), a K-dimensional approximate projection of (B, A) onto

Im ⇡K , satisfying Condition 1.4.2, using Algorithm 2 or other method

5. Build components of policy operator on Im ⇡K and Ker ⇡K

(a) Build policy operators on Im ⇡K using approximate projections

i. [

˜Q⇤K
1

, ˜Q⇤K
2

]


˜TK
11

˜TK
12

0

˜TK
22

,
˜SK
11

˜SK
12

0

˜SK
22

� 
˜UK

11

˜UK
12

˜UK
21

˜UK
22

�
 QZ(

˜BK , ˜AK
)

Apply QZ algorithm to obtain generalized Schur decomposition of
(

˜BK , ˜AK
)

ii. g̃K
x  �(

˜UK
22

)

�1

˜UK
21

, ˜hK
x  (

˜UK
11

+

˜UK
12

g̃K
X )

�1

(

˜SK
11

)

�1

˜TK
11

(

˜UK
11

+

˜UK
12

g̃K
X )

(b) Build policy operators on Ker ⇡K by analytical decomposition of (BI , AI)

i. [(Bi
I , A

i
I)]jk  hBIeij, eiki , hAIeij, eiki 8j, k = 1 . . . J Construct

(Bi
I , A

i
I) (identical for all i) using {eij}J

j=1

for some i

ii. [Qi⇤
1

, Qi⇤
2

]


T i

11

T i
12

0 T i
22

,
Si

11

Si
12

0 Si
22

� 
U i

11

U i
21

U i
12

U i
22

�
 QZ(Bi

I , A
i
I) Apply

QZ algorithm to (Bi
I , A

i
I)

iii. gi
x  �(U i

22

)

�1U i
21

, hi
x  (U i

11

+U i
12

gi
x)
�1

(Si
11

)

�1T i
11

(U i
11

+U i
12

gi
x) Build

policy functions over Span{eij}J
j=1

iv. Add identical components for all i = K + 1 . . .1

gK?
x =

1X

i=K+1

JX

j=J1+1

J1X

k=1

(gi
x)(j�J1)k heik, [.]i eij

hK?
x =

1X

i=K+1

J1X

j=1

J1X

k=1

(hi
x)jk heik, [.]i eij

for J
1

blocks in Hx, J � J
1

in Hy.

6. gK  g̃K
x + gK?

x , hK  ˜hK
x + hK?

x Add components
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by the quantity of data available. To more precisely quantify the size of these errors,

we provide an example of a set of conditions on (B, A), the approximating subspace

Im ⇡K , and the evaluation method for the projections which provides precise rates.

In more general situations, where these conditions don’t hold or other approximation

methods are desired, similar approaches can guarantee the high level conditions of

the preceding theorem.

In particular, I cover the example of Coiflet sampling and representation as in

Beylkin et al. (1991) for Fredholm integral operators with Hölder-continuous kernel.

Fredholm integral operators are a canonical example of operators which are given by

a compact component and potentially a component given by an identity, and appear

frequently in examples. Wavelet sampling methods provide a particularly fast and

accurate method for approximating these operators even when the kernel can only

be accessed by pointwise evaluation, perhaps because it is a complicated function

which has itself been numerically approximated, such as a function of a steady state

calculated numerically by fixed point iteration.

(i) Let {Hj}J
j=1

be given by the spaces of square integrable periodic functions of

dimension dj with domain normalizable to [0, 1)

d
j , Hj = L2

per[0, 1)

d
j . Let (BC , AC)

consist on each block (i, j) of r = B or r = A of integral operators mapping

f(y) 2 Hj to f(x) 2 Hi f(x) =

´
[0,1)

d

j

Kr,ij(x, y)[f(y)]dy such that for all r, i, j

sup

x,y2[0,1)

d

i⇥[0,1)

d

j

|Kr,ij(x, y)|<1 and Kr,ij(x, y) 2⇤

↵
r,ij

([0, 1)

d
i ⇥ [0, 1)

d
j

), the space of

↵r,ij-Hölder continuous periodic functions on [0, 1)

d
i ⇥ [0, 1)

d
j for some ↵r,ij > 0.10

(ii) Let Im ⇡K
j be the subspace spanned for each j by a tensor product of dj one-

dimensional orthonormal Coiflet wavelet multiresolution analyses with mother wavelet

 and scaling function � with each bounded, having support which is a compact

interval, and a number of vanishing moments greater than or equal to min

r,i,j
↵r,ij. Let

10A function f(x) is Hölder continuous on domain I of order ↵ 2 (0, 1] if sup
x,y2I

|f(x) � f(y)| 
K|x � y|↵ and is Hölder continuous of non-integer order ↵ > 1 if it is b↵c times continuously
differentiable with b↵cth derivatives Hölder continuous of order ↵� b↵c.
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the matrix representation of (

˜BK , ˜AK
) on this space be given by ⇡K

(BI , AI)⇡K plus

a matrix where the i, j block is given by the discrete wavelet transforms over rows

then columns of the Ki ⇥ Kj matrix whose (s, t) entry is 1p
K

i

K
j

Kr,ij(xs, yt), where

{xs}K
i

s=1

and {yt}K
j

t=1

are dyadic grids over [0, 1)

d
i and [0, 1)

d
j respectively.

Remark. On (i): These assumptions can be slightly relaxed through different choices

of wavelet basis. Periodicity is convenient for proofs because it does not require any

special treatment of boundaries: it also fits the example model presented. Depend-

ing on the problem, this may be relaxed by one of a number of boundary extension

methods: see Mallat (2008). Compact support can be replaced by a tail condition

by sampling an increasing spatial domain. Boundedness of the kernel can likewise

be dispensed with provided the operator remains compact and some knowledge of

the singularity is available: Beylkin et al. (1991) provides methods and convergence

results for many singular integral operators. It is likely that Hölder regularity could

be replaced with more general Besov classes which may exhibit less uniform reg-

ularity, at the expense of more difficult analysis of the quadrature approximation.

In both of these cases, speed of the algorithm may be enhanced by pruning away

those basis functions whose inner product with the kernel is below a small thresh-

old. As the wavelet representation is often sparse, one may incur minimal error in

the approximation of (B, A) while substantially reducing the size K of the matrix

for which one calculates the generalized Schur decomposition, an order K3 operation

which dominates the quadratic time to evaluate and threshold a higher order wavelet

representation.

On (ii): As described, the procedure represents each kernel in terms of a tensor

product of multiresolution wavelet bases instead of a single multidimensional multires-

olution analysis as advocated in Beylkin et al. (1991): while such a representation

has desirable features for thresholding procedures, a tensor product representation of

the operator ensures that functions in the domain and range space are represented in
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terms of the original dj-dimensional orthonormal wavelet basis. For j with dj > 1,

either a tensor product wavelet basis or a multidimensional wavelet multiresolution

analysis may be used in calculating the basis functions: the space spanned by a fi-

nite representation is identical. In practice, the multidimensional MRA is preferred

computationally. The moment condition is assumed to hold for the one-dimensional

wavelets generating the tensor product or multiresolution basis.

The requirement that both wavelet and scaling function have compact support, ↵

vanishing moments, and generate an orthonormal basis strongly restricts the choice

of wavelet class. The use of Coiflets (Beylkin et al. , 1991) (or certain mild general-

izations, as in Wei (1998), which also maintain these properties) is in fact required to

achieve optimal rates via the procedure described. The purpose of this assumption

is to ensure that the operator can be represented directly in terms of the discrete

wavelet transform of its evaluations at a set of points, effecting a ‘one-point quadra-

ture’ scheme for the calculation of the coefficients of the representation. For more

general classes of wavelets, the use of the discrete wavelet transform of the evalua-

tion points of a smooth function to substitute for the projection onto a wavelet basis

results in an error which is of higher order than the error induced by restricting to a

projection onto a finite basis.

Other classes of wavelets may be used if the projection is approximated by a multi-

point quadrature scheme, as described in Beylkin et al. (1991) or Sweldens & Piessens

(1994), at the cost of additional preprocessing before applying the discrete wavelet

transform. If neither multipoint quadrature nor the use of Coiflets is acceptable, it is

also possible to use interpolating wavelets, which do not form an orthogonal basis and

result in a more complicated representation of ⇡K
(BI , AI)⇡K . General considerations

regarding wavelet sampling are discussed in Mallat (2008). One case in which special-

ized classes of wavelets may be necessary is when the domain is not rectangular or is

a subset of a non-Euclidean manifold, as may occur with geographic data restricted
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to an irregularly shaped geographic unit or on the surface of the Earth. In this case,

a variety of alternative bases and sampling methods are available.

The procedure for constructing approximate projections (

˜BK , ˜AK
) using the Coiflet

basis is laid out in Algorithm 2. Under the above conditions, it can easily be shown

that one obtains rapid convergence of the approximation algorithm:

Theorem 1.2. Let (B,A) and (

˜BK , ˜AK
) satisfy (1.4.2),(1.4.2), and (1.4.3). If ↵̄ =

min

r,i,j

2↵
r,ij

d
i

+d
j

and ¯d = max

j
2dj, there exists C > 0 such that ⌘K = O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)

)

and ⇣K = O(C
¯dJmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)

). As a result, operator norm ✏-approximations

of hx and gx such that khK � hxkop  ✏ and kgK � gxkop  ✏ can be calculated using

a basis of K = O(J(

JCd̄

✏
)

1
↵̄

) functions in O(J3+

3
↵̄ C

3d̄

↵̄ ✏�
3
↵̄

) operations.

This result shows that a polynomial time approximation scheme is feasible for this

class of models. Due to the accurate quadrature properties of compactly supported

wavelet multiresolution analyses, the error from projection and the error from quadra-

ture are of the same order in K, up to constants. While a curse of dimensionality

exists with respect to the number of variables entering as arguments of the functions

used as state variables, the fact that the functions are themselves infinite-dimensional

objects does not impede impede approximation. Further, when the operators are rea-

sonably smooth, as measured by Hölder exponent of the integral kernels, the rate

of convergence can be quite rapid. If one is interested in the policy operators as a

whole, rather than just their derivatives, this approach only provides a first order

Taylor expansion. As a result, it provides accurate approximations within a local

neighborhood of the nonstochastic steady state. In the case where the policy op-

erators are continuously Fréchet differentiable, operator norm approximation of the

first derivative ensures that the approximated Taylor expansions of the operators are

✏-close to the true operators uniformly over an open neighborhood of this steady state.

Remark. The dependence on J , which in most applications has the interpretation of

the number of independent functions which constitute the equilibrium objects (e.g.,
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Algorithm 2 Construction of (

˜BK , ˜AK
) using wavelet quadrature

Inputs: Block operators (B, A) = (BI , AI) + (BC , AC) s.t. (BC , AC) is composed of
integral operators

´
[0,1)

d

j

Kr,ij(x, y)[.]dy 8i, j 2 1 . . . J, r 2 {B, A} satisfying Condition
1.4.3(i), {Kj}J

j=1

number of evaluation points for each block
Output: (

˜BK , ˜AK
) satisfying Condition 1.4.2

1. [Kr,ij]s,t  1p
K

i

K
j

Kr,ij(xs, yt) for xs, yt on evenly spaced grids of size Ki, Kj

over [0, 1)

d
i , [0, 1)

d
j respectively, 8i, j, r. Construct matrices to represent kernels

of integral operators

2. (

˜BK
C , ˜AK

C )r,ij  (DWT[(DWT[Kr,ij])
⇤
])

⇤ 8i, j, r Construct approximate projec-
tion coefficients by discrete wavelet transform of rows then columns of Kr,ij,
using Coiflet wavelets basis satisfying Condition 1.4.3(ii)

3. (

˜BK
I , ˜AK

I )  ⇡K
(BI , AI)⇡K Represent identity operators by Ki ⇥ Kj identity

matrices

4. (

˜BK , ˜AK
) (

˜BK
I , ˜AK

I ) + (

˜BK
C , ˜AK

C ) Add components

a value function, a distribution of individual states, and so on) and is usually a fixed

feature of the model, will in general be conservative, as it is based on the worst case

that all blocks of (BC , AC) contain an integral operator and that the difficulty of

approximation of each operator, measured by 2↵
r,ij

d
i

+d
j

, is roughly equal. If the row and

column corresponding to subspace j for all but a subset S of subspaces do not contain

an integral operator or contain only operators which are substantially smoother and so

require fewer basis functions to approximate to ✏ accuracy, and only K = O(S(

JCd̄

✏
)

1
↵̄

)

basis functions will be needed. This may be the case, for example, if one block contains

an operator which is substantially harder to approximate than others (due to being

higher-dimensional, less smooth, or both), in which case S = 1. In most applications,

J is fixed and very small, though it could grow, for example, if some components are

represented by a functional autoregressive model of high order.
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1.5 Evaluation

The above procedures may be applied to construct an approximate linearized solution

to the model of trade, migration, and economic geography of Chapter 2. Details of

the model and its solution are described fully in that chapter: here I provide only an

assessment of the performance of the above algorithms with respect to the linearized

solution of a calibrated version of that model. The model consists of a system of

nonlinear operator equations in three function-valued variables, x
1

= �(.), x
2

=

⌫(.), y = V (.) each in L2

per[0, 1) and the linearized equilibrium conditions may be

represented as block operators acting on (x
1

, x
2

, y) by

(B, A) =

0

BBBB@
�

2

66664

0 0 I

P 0 �P � �PP

0 � 0

3

77775
,

2

66664

d!
d�

I �P

I 0 0

0 I 0

3

77775

1

CCCCA

in which P , d!
d�

, and � are compact linear integral operators and � is a scalar pa-

rameter, all defined explicitly in Chapter 2. It is shown there that there exists a

parameterization in which each integral operator is translation invariant, and so has

a representation in the class of convolution operators. The representation in terms

of compact and identity operators clearly demonstrates that the model is asymptot-

ically diagonal, and under this parameterization, sufficient conditions on structural

parameters may be derived such that the model satisfies Condition (1.4.2), and so

provides a suitable case for application of the method.

To evaluate the approximation algorithm, several numerical comparisons are per-

formed for the translation invariant parameterization of this model defined in Chap-

ter 2 using two separate choices of subspace for projection ⇡K . One choice is Coiflet

wavelets, implemented via Algorithm (2). Another choice, particularly well suited

to this model, is the Fourier basis of trigonometric polynomials. It is demonstrated
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in Chapter 2 that not only can the projections be calculated exactly without addi-

tional quadrature approximation in this case, the functional derivatives of the policy

operators gx and hx are also available in semi-closed form,11 for any bandlimited in-

put function. This generates a near-exact benchmark for the error in the operator

approximated by wavelet quadrature, which I compute at different levels of K. Ac-

curacy can be compared for impulse responses to function-valued shocks, as well as

for simulations. The Fourier and wavelet methods appear to exhibit a high degree

of agreement, whether expressed in squared error norm over the grid points (a proxy

for L2 norm, controlled by the theory) or in maximum norm over grid points (not

controlled by the theory). Error is largest for components and at parameter val-

ues at which the component of the Fourier coefficients which must be approximated

numerically has substantial impact, suggesting that this quadrature error may be a

non-negligible factor contributing to the discrepancy between wavelet and semi-closed

form representations, but overall the discrepancy primarily measures the effect of the

wavelet quadrature and projection as controlled by Theorem (1.2). For the Fourier

representations, integer frequencies �K
2

to K
2

are used for each of J = 3 functions ⌫(.),

�(.), and V (.), giving 3 ⇥ (K + 1) basis functions, for symmetry, while for wavelets

K grid points are used to represent the scaling function coefficients for each function,

with K given by a power of 2.

I evaluate the policy operator by constructing an impulse response to a smooth but

spatially localized shock "(.) to the exogenously evolving component of the model ⌫(.),

a scaled Gaussian spike centered at location 0.5, with functional form exp(50000(.�
0.5)

2

). Relative accuracy of the Fourier and wavelet representations of the model

for the above shock are measured in Table (1.5.1), for K = 256, 512, and 1024,

for the maximum error at any grid point over 80 periods of the impulse response.

Figures (1.5.1) and (1.5.2) represent the Euclidean norm difference (over an evenly
11Minor numerical error is introduced into the computation by numerical calculation of an integral

term in the coefficients, see the complete model description for full details.

53



Table 1.5.1: Numerical IRF Discrepancy, Fourier vs. Wavelet Representations
K max pointwise, ⌫t max pointwise, �t max pointwise, Vt Running Time (seconds)

256 0.0107 3.9549e-07 1.9362e-06 11.607549
512 3.4594e-07 5.0737e-08 7.6597e-08 96.187571
1024 8.9301e-11 1.2976e-08 1.9643e-08 376.833220

spaced grid) for each j = {1, 2, 3} at each time point between the wavelet and Fourier

representations at the different values of K, a proxy for the L2 norm. Note that even

for K = 512, the errors are already extremely small, with maximum pointwise error

on the order of 10

�7 or smaller for ⌫t(x) a function with values ranging from 0 to 1,

and 10

�8 for �t(x) and Vt(x), functions with range of about 0.1. The order of this

error decreases significantly for K = 1024, both for maximum and squared average

error.

The clock time to compute the wavelet solutions, also displayed in Table (1.5.1),

is relatively fast and increases roughly in cubic proportion to K, taking under two

minutes for K = 512, including producing all figures and evaluation metrics, coded

in Matlab using the default QZ function on a 2011 Macbook Pro with 2.8 GHz Intel

i7 processor and 2 GB RAM. This level of speed and accuracy on a far from state of

the art setup suggests that the procedure may be useful in applications where it is

applied repeatedly, for example to estimate parameters. The Fourier representation

takes only a few seconds for any K, which should be expected as it allows calculating

solutions for each frequency separately and so takes time linear in K. This feature is

only a result of the special structure of this model and is not likely to generalize.

1.6 Conclusion

The idea that heterogeneity matters for economic outcomes, not only at the individual

level but through the set of interdependencies linking behavior at the individual level

to the environment faced by others, is a core principle in economics. Function-valued
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Figure 1.5.1: Euclidean Discrepancy, K=512
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Figure 1.5.2: Euclidean Discrepancy, K=1024
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stochastic processes, by describing how patterns of heterogeneity change over time

and relate to other variables, provide an analytical framework in which these inter-

dependencies can be modeled and evaluated directly rather than considering only ag-

gregate variables. While describing economic decision making in these environments

can be challenging due to the high dimension of the relevant variables, a substantial

amount of information can be recovered by describing the problem locally near a

point where infinite-dimensional uncertainty disappears. A linearized solution allows

consideration of responses to any possible pattern or shape that can be considered,

accurately representing the behavior of the system in an infinite-dimensional set of

possible inputs. Moreover, for many systems, this response can be calculated quickly

and accurately, uniformly over all possible directions by projection representations of

the functional derivatives of the system.

The dynamics of economic interactions over space, typically challenging to de-

scribe due to the fact that people in different locations must respond differently to

the geographic patterns of economic activity induced by trade and spatially inho-

mogeneous regional disturbances, provide a demonstration of the rich patterns of

relationships that can be captured by allowing decisions and distributions to respond

to the precise geographic pattern of shocks. Responses can differ substantially based

on distance, but also based on expectations of perceived future spatial distributions.

Although spatial interactions provide a case which illustrates the full importance of

allowing for response to potentially arbitrarily shaped patterns of heterogeneity, the

function-valued approach seems promising for a wide variety of applications. These

include understanding the mechanisms behind the dynamics of income and wealth

inequality over business cycles, analyzing both through the relationship with capital

markets, as has been explored in existing studies of incomplete markets models with

aggregate shocks, as well as other potential economic mechanisms and policies. They

may also be useful for studying a variety of patterns of interaction which depend on
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the entire shape of the distribution of heterogeneity, such as matching markets in

labor or other contexts or interactions through a social or economic network.

While for some applications, existing methods may be used to characterize the

dynamics of economic heterogeneity, albeit without explicit guarantees of accuracy,

the function-valued approach may still be desirable as a framework for data analysis.

By explicitly allowing the model to incorporate uncertainty of arbitrary shape, the

models described allow a complete characterization of the variation in micro and

macroeconomic data and open the possibility of comparing the model directly to cross-

sectional micro data. Because linearized function-valued models generate dynamics

consistent with functional linear processes, estimation and inference methods from

functional data analysis may be applied to evaluate them empirically. Given the

speed and accuracy of the solution methods, they may also open up the possibility

of using functional data methods to perform full information structural estimation of

models with heterogeneous agents.

58



Chapter 2

A Dynamic Model of Economic

Geography

To study the evolution over time of the spatial structure of economic activity, popu-

lation, and welfare, I introduce a dynamic stochastic model of trade, migration, and

economic geography. In this model, agents make forward-looking costly migration

decisions in response to a spatial distribution of wages which is determined endoge-

nously in spatial equilibrium as a function of the population distribution and patterns

of persistent regional shocks to amenity values. A closed form characterization of the

equilibrium is provided for a class of economies with idealized spatial structure and

numerical methods and simulation results are provided for a general case allowing

nonparametric spatial heterogeneity along a variety of attributes. The setting allows

for a reevaluation of the relationship between spatial agglomeration externalities and

population dynamics, suggesting that the sources of long-run spatial heterogeneity

may differ substantially from those driving the response to temporary shocks.
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2.1 Introduction

The spatial structure of economic activity may vary over time due to changes in

economic variables which differentially affect certain locations and the propagation

of these effects through channels which link economic activity across space. Trade

creates spatially complex patterns of linkages in production and consumption which

induce nontrivial relationships between local changes and the global distribution of

economic activity and welfare. On somewhat longer timescales, the economic struc-

ture of different locations is transformed by migration, induced in part by differ-

ences in economic wellbeing across regions. To maintain tractability in the study

of economies with complicated spatial structure, it is common to evaluate welfare

effects of changes in economic variables in trade equilibrium, where trade and produc-

tion adjust but the distribution of factors remains fixed, and to consider patterns of

population across cities or locations in spatial equilibrium, in which population has

adjusted to equate welfare across regions. While convenient for characterizing cross-

sectional variation, these frameworks make it difficult to study the effects of spatially

distributed uncertainty and the dynamics of adjustment to spatial shocks in which

the spatial distributions of population, production, and consumption evolve gradually

and interdependently.

A particular difficulty faced by these static frameworks is reconciling the high

degree of spatial concentration of economic activity and population corresponding to

urban agglomerations with dynamic processes of migration which must lead to these

agglomerations. In long run equilibrium, migration across regions is often assumed

to act as an equilibrating force which attenuates or eliminates differences in welfare

(for the marginal resident) between locations (Roback, 1982; Piyapromdee, 2015). At

the same time, substantial evidence in economic geography suggests that pervasive

agglomeration externalities can create complementarities which induce or magnify

regional heterogeneity, causing population and economic activity to concentrate in
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space (see Glaeser & Gottlieb (2009) for a survey). If these forces are sufficiently

powerful, movements in population may in some sense be self-reinforcing, so that

transitory population changes may induce changes in local welfare which induce fur-

ther migration (Krugman, 1991; Allen & Arkolakis, 2014). Under an exogenously

specified behavioral equation for population movements chosen for tractability (see

Krugman (1996, p. 109 Footnote 1)), Krugman (1996) shows that a model with these

features exhibits local dynamic instability in the spatial structure, with small pertur-

bations from a geographically homogeneous steady state diverging towards spatially

variegated, history-dependent regional patterns. This class of processes provides a

potential explanation for persistent economic differences across locations and the ori-

gin of cities, but implies that the joint dynamics of migration, wages, and economic

activity play a destabilizing rather than stabilizing role.

These contrasting views of the role of migration in the dynamic evolution of re-

gional activity and welfare call for a more exacting characterization of the interaction

between population movements and spatial structure. To investigate these issues,

I introduce fully forward-looking costly dynamic migration decisions and stochastic

aggregate shocks perturbing the desirability of population flows between locations

into a model subsuming the spatial structure of trade and production of Krugman

(1996) but also permitting extremely rich (nonparametric) quantitative ex ante spa-

tial heterogeneity as expressed in Allen & Arkolakis (2014). To capture the temporal

structure of the dynamics, the model includes dynamic idiosyncratic heterogeneity

inducing migration flows in equilibrium, subject to adjustment costs, so that adjust-

ment to regional shocks must take place in the short run by movements of prices and

quantities and only gradually by shifts in population. This feature, along with explicit

modeling of preferences, also has the advantage of allowing evaluation of the welfare

implications of regional shocks. This fully dynamic structure replaces the more com-

mon assumptions of immediate adjustment of populations to equalize welfare across

61



regions, complete markets in insurance for regional uncertainty, or complete labor

immobility commonly imposed to ensure tractability in spatial models. An excep-

tion is provided by Caliendo et al. (2015), which is descriptively rich, and from

which the model incorporates the structure of the intertemporal migration problem,

as introduced originally by Artuç et al. (2010).

The proposed model differs from Caliendo et al. (2015) in market structure and

in allowing a continuum of locations, which is feasible in a high-dimensional dynamic

model using the functional linearization techniques introduced in Chapter 1. As will

be shown, the use of a continuum provides several advantages. Beyond the greater

generality and ability to fit to arbitrary resolution, the continuum allows substan-

tially greater tractability and analytical insight under certain parameterizations of the

model. Most importantly, in the special case, also considered by Krugman (1996), of

a completely spatially homogeneous geography with a continuum of locations where

no location differs ex ante from any other, the linearized solution to the model can be

described analytically. This permits detailed characterization of the effects of different

structural parameters on the responses to shocks and to the local dynamic stability

of the model. In particular, it permits reevaluation of the hypothesis of history de-

pendence, in which small temporary shocks to fundamentals can induce permanent

changes in the spatial structure of the economy, in a self-reinforcing process in which

population growth induces local productivity growth through agglomeration effects,

which in turn raises wages and attracts more population growth. It will be shown

that in a forward-looking economy, the conditions under which such a process induces

permanent changes may be substantially more stringent, in essence because percep-

tion that growth will be temporary dampens the migration response, reducing the

agglomeration effect and thereby slowing down each stage of the cycle so that the

total effect is finite and transient.

Beyond the tractable spatially homogeneous special case, the generality and preci-
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sion of functional linearization also permit numerical characterization of the dynamics

for substantially more realistic spatial patterns. In order to implement this procedure,

I introduce a simple and fast iterative method for computing a steady state equilib-

rium for nonparametric spatial patterns of trade and migration costs or evolution

of shocks, and apply it in combination with the wavelet-based approximate solution

algorithm in Chapter 1. I then construct simulations and impulse responses to shocks

under highly rugged spatial patterns to demonstrate how economic variables evolve

when locations are not ex ante identical. The results highlight the role of migration

and trade costs in differences between regions and in their responses to shocks.

2.2 Model: Trade, Migration, and Economic Geog-

raphy

We begin with the intertemporal decision problem, which can be analyzed indepen-

dently of the static equilibrium structure. Notation follows Krugman (1996). Individ-

uals working in the tradeables sector at location x in geography G, a set of locations

with a distance metric which for now we take to be a subset of Euclidean space,

receive in each period t a real wage !t(x) and a value of regional amenities ⌫t(x),

both taken as given by the worker. A worker in location x at time t may decide

to move to location x0 in period t + 1 at a cost c(x0, x) which is a convex function

of distance traveled. Workers are risk neutral with time-separable additive utility

and discount the future at rate �. In each period they also receive independent and

identically distributed across time and worker shocks ✏t(x0) to their utility for each

potential choice of location x0, distributed according to a Gumbel process (Maddison

et al. , 2014), whose finite-dimensional marginal distributions are independent Type

I extreme value random variables. The Bellman equation for the decision problem is
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therefore given by

˜Vt(x) = max

x0
{!t(x) + ⌫t(x) + c(x0, x) + ✏t(x

0
) + �Et

˜Vt+1

(x0)}

For reasons of tractability, it is easier to work with the conditional expectation of this

equation: denoting Vt(x) := Et
˜Vt+1

(x), we obtain

Vt(x) = Etmax

x0
{!t+1

(x) + ⌫t+1

(x) + c(x0, x) + ✏t+1

(x0) + �Vt+1

(x0)}

As a result, the location decision satisfies a continuous analogue of a multinomial logit

decision rule: the conditional density of choices at location x0 given current location

x is given by

p(x0|x, V ) = exp(c(x0, x) + �V (x0))/
ˆ

exp(c(x0, x) + �V (x0))dx0.

The use of extreme value shocks to generate a logit formulation for the policy function

is similar to that used in Caliendo et al. (2015), with the difference that here the

decision rule is defined over a continuum. To simplify notation, we will write the

partition function of this conditional density as

f(x, V ) :=

ˆ
exp(c(x0, x) + �V (x0))dx0.

Using the closed form characterization for the expectation of the maximum of a

Gumbel process, it is possible to write the expectation over the maximum in terms

of the partition function, allowing the Bellman equation to be simplified to

Vt(x) = Et!t+1

(x) + ⌫t+1

(x) + log f(x, Vt+1

) + � (2.1)
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where � is the Euler-Mascheroni constant (⇡ 0.577). Due to this explicit form, no

numerical optimization is needed to compute the value function. Since it can be

shown that Blackwell’s conditions hold, the Bellman operator is a contraction and

the steady state value can be found by iteration of the contraction mapping.

The above constitutes the forward looking component of the model. To determine

the implications of the chosen policy for dynamics of the equilibrium, assume that

at each location there is a continuum of workers, who each receive independent and

identically distributed preference shocks, and that the total mass of workers has

measure 1 and is distributed across locations at time t with density at location x

given by �t(x). Since the conditional density over locations given an initial state x

is given by p(x0|x, V ), the time evolution of the density of workers across regions is

given by the (adjoint) Markov transition operator

�t+1

(x0) =

ˆ
G

p(x0|x, Vt)�t(x)dx (2.2)

taking the current distribution of population �t(x) to the next period distribution

�t+1

(x).

Together, �t and ˜Vt constitute the endogenous function-valued state variables of

the model. To complete the model, one computes a static spatial equilibrium which

generates a value of real wages at each location !t(x) given a distribution of population

across places. A number of assumptions on market structure, trade, and geographical

spillovers are possible here, with many models of trade and geography taking similar

functional forms as discussed by Allen & Arkolakis (2014). A simple benchmark choice

is the model of increasing returns, monopolistic competition, and iceberg trade costs of

Krugman (1996), whose static structure can be borrowed without change. Specifically,

we copy the block of equations (A.24)-(A.27) of that model to determine wages given

population. See Krugman (1996) for derivation and more detailed explanation.
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Variables included in these equations are Y (x), output at location x, T (x), the

price index at location x, and w(x), the nominal wage in terms of the nontraded good.

Parameters used are �, the elasticity of substitution of the CES aggregator across

varieties, µ, the Cobb-Douglas expenditure share on traded goods, ⌧̃ , a scale factor,

and ⌧(x, z), the effective economic distance in the proportional iceberg trade costs

1 � e�⌧̃ ⌧(x,z) of shipping a good from point x to point z, and a normalizing constant

c̃. Given a predetermined distribution of population �t(x), a static equilibrium of

the model is given by functions {Yt(x), Tt(x), wt(x),!t(x)} satisfying the system of

nonlinear integral equations

Yt(x) = 1� µ + µ�t(x)wt(x) (2.3)

Tt(x) =


c̃

ˆ
G

�t(z)wt(z)

1��e⌧̃(1��)⌧(x,z)dz

� 1
1��

(2.4)

wt(x) =


c̃

ˆ
G

Yt(z)Tt(z)

��1e�⌧̃(��1)⌧(x,z)dz

� 1
�

(2.5)

!t(x) = wt(x)Tt(x)

�µ (2.6)

This system of equations is not analytically tractable, and has no explicit solution

for !t in terms of �t. However, a solution in general exists and under certain conditions

on parameters one may be able to calculate an implicit solution.

The dynamic specification of the model is completed by the inclusion of aggregate

uncertainty. As described above, while agents take into consideration the expecta-

tion of real wages, in the absence of additional inputs, these evolve deterministically.

A number of potential sources of aggregate uncertainty can arise which affect the

evolution of population across regions. For the purpose of the decision problem over

locations, however, any source of uncertainty which affects the static equilibrium of

the model exerts its effect only through its impact on the real living standards at

different locations, !t(x) + ⌫t(x). Amenity value is exogenous in this specification of

the model, and shocks to amenities across locations can reflect natural mechanisms
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like patterns of weather or natural disasters, or outcomes of (exogenous) local policies.

Disturbances to variables determined within the static equilibrium of the model, such

as changes in productivity (which may vary by location) in traded or nontraded sec-

tors, changes in trade costs, or relative preferences for different varieties of good, will

all show up in real wages. Further, because these are determined as the outcome of a

purely static process, any persistence in these deviations (aside from that transmitted

through the dynamics of population, described above), must come from outside the

model. As a result, for the purposes of deriving the dynamics of economic activity

and population, it is equivalent to model all shocks as changes to the exogenous value

of amenities ⌫t(x) at time t, and to provide exogenously specified dynamics for these

shocks.

While many forms are possible, because the model will end up being linearized, it is

sufficient to consider a linear specification for the dynamics of ⌫t(x). For simplicity of

illustration and, later, computation, I consider a first order functional autoregression

specification with a kernel representation of the transition operator.

⌫t+1

(x) =

ˆ
G

�(x, z)⌫t(z)dz + "t+1

(x) (2.7)

In the above, �(., .) is some bounded, smooth, square-integrable function parame-

terizing the degree of spatial diffusion of shocks, and "t(x) is an i.i.d. function-valued

Banach random element with covariance operator ⌃. Note that the additive formu-

lation of the shock ⌫t is without loss of generality even when interpreted as shocks to

the trade component of the model, as subsequent to linearization, up to appropriate

reparameterization of � and ⌃, all specifications lead to a representation in the lin-

earized Bellman equation as an additive shock to !t(x). While this is without loss of

generality for the purpose of determining dynamic properties of the model, specifica-

tion of the particular form in which shocks enter could be used to aid identification
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of the effects of these particular shocks, by specifying � and ⌃ as results of the com-

posite effects of multiple shocks. However, since all static variables are determined

jointly and contemporaneously, identification requires the aid of functional form as-

sumptions on the covariance of shocks or the validity of external instruments, and so

no conclusions can be drawn without additional assumptions. The additive structure

does have implications for identification of the model in the case where amenities are

not directly observed, as the impact of shocks to real wages and amenities must be

disentangled to identify the effects of each, but given the dynamics of the sum, the

division has no effect on the dynamics of the other model variables, at least to first or-

der. Similarly, as in Caliendo et al. (2015), the idiosyncratic valuation shocks which

induce diffusion of population may be divided between real income and amenities,

affecting interpretation but not the dynamics of the model.

While we will later consider parameterizations under which it is necessary to solve

numerically for many components of linearized model, for this model, it is possible

to construct a particularly tractable special case in which the steady state and pro-

jections of derivatives can be computed exactly. In this case, we set the effective

distance for trade ⌧(x, z) = |x� z|, and likewise set the distance cost for migration

to c(x0, x) = c(x0 � x), so that the cost between any two locations is not changed if

we translate the origin and the destination by an identical distance. If we assume

that the geography is spatially homogeneous, such as the case of a circle, a sphere,

an infinite line or plane, or higher-dimensional analogues of the preceding, the steady

state of the system has a closed form solution. In particular, set ⌫t(x) to 0 in all

periods and conjecture that the initial distribution of population is uniform over the

real line, in the sense that population measure over any interval is given by Lebesgue

measure over the interval. Then it can be seen that a solution of the static equilibrium

component of the model is given by {Yt(x), Tt(x), wt(x),!t(x)} which are all constant

over x. To ensure a simple normalization, let c̃ =

⌧(��1)

2

, which ensures that all of
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these functions are equal to 1. Plugging this into the Bellman equation under the

assumption that !t = 1 is constant over time, shows that, because c(x0 � x) is trans-

lation invariant, V (x) =

¯V constant is the unique solution of the Bellman equation.

Placing this in p(x0|x, V ), we obtain that p(x0|x, ¯V ) / exp(c(x0 � x)) and so is also

translation invariant, and in particular if c(x0�x) = log g(x0�x) for any nonnegative

function g(.), the transition equation for �t is given by a convolution with a density

proportional to g(.). For example, if c(x0 � x) = � 1

2c
(x0 � x)

2, quadratic adjustment

costs, equation (2.2) is given by convolution with a Gaussian with standard deviation

c, and if c(x0�x) = �1

c
|x0�x|, equation (2.2) is given by convolution with a Laplace

distribution with dispersion parameter c. Because convolution is spatially invariant,

the unique steady state of this transition equation on a translation-invariant domain

is the uniform distribution, thus verifying the initial conjecture. For convenience,

note that in steady state the partition function f(x, ¯V ) is a constant, ¯f . To generate

a specification in which the dynamics share the translation invariance property of the

steady state, �(x, z) can be chosen to be translation invariant, equal to �(x� z) for

a bounded square integrable univariate function, thereby restricting to shocks which

do not diffuse differently from ex-ante identical locations.

Given the existence of a steady state, the dynamics of the model local to this point

can be expressed by taking functional derivatives of the operators. To express this

model in format appropriate for solution by a functional linear rational expectations

algorithm, express the model recursively in terms of jump variable V (x) and prede-

termined variables �(x) and ⌫(x) and their next period values V 0,�0, ⌫ 0, solving out

the static variables, which may be expressed at each time as a deterministic function

of these three states, which are completely sufficient to solve for the dynamics of the

model. We consider perturbations of V and ⌫ as elements of L2

(R) and perturbations

of �, a probability distribution, as an element of L2

0

(R), the space of square integrable

functions on R integrating to 0, ensuring that densities integrate to 1.
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First, the transition equation is linear with respect to � with derivative given

by a convolution of the argument with density proportional to exp(c(x0 � x)), an

operator which we can denote as P [.] :=

´
1

¯f
exp(c(x0 � x) + � ¯V )[.]dx0. This can

be interpreted as convolution with Gibbs distribution with potential given by the

cost of moving: in the absence of disturbances to the value of a different locations,

given a current population at each location, next period population spreads out by

an amount proportional to the cost of distance. The Bellman equation is linear in V

with derivative equal to the identity and has functional derivative with respect to V 0

given by �
¯f

´
exp(c(x0�x)+� ¯V )[.]dx0 = �P [.]. The transition equation has derivative

equal to the identity with respect to �0 and has derivative with respect to V given by

�
´

G
1

¯f
exp(c(x0�x)+� ¯V )[.]� 1

¯f
exp(c(x0�x)+� ¯V )

�
¯f

´
exp(c(z0�x)+� ¯V )[.]dz0dx, which

equals �P ��PP . The transition equation for ⌫ is linear in ⌫ and ⌫ 0, with derivative

with respect to ⌫ given by �[.] :=

´
�(x, z)[.]dz and ⌫ 0 by the identity. Finally,

although no closed form expression exists for !(x) in terms of �(x), its functional

derivative d!
d�

with respect to �(x), which is all that is needed, can be determined by

implicit differentiation of equations (2.3),(2.4), (2.5), and (2.6): the exact formula is

derived in Appendix C as equation (13).

Together these calculations fully characterize the derivatives of the model’s equi-

librium conditions with respect to the state variables. Arranging these derivatives

into blocks with elements given by linear operators, the linearization of the equilib-

rium conditions of this model can be expressed in a form suitable for application of

our solution methods, as a pair of linear operators representing the derivatives of the

equilibrium conditions of the model with respect to today’s state variables (�, ⌫, V )
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and tomorrow’s state variables (�0, ⌫ 0, V 0
).

0

BBBB@

2

66664

0 0 I

P 0 �P � �PP

0 � 0

3

77775
,

2

66664

d!
d�

I �P

I 0 0

0 I 0

3

77775

1

CCCCA
(2.8)

In this pair of operators, the columns correspond to function-valued state variables,

while the rows correspond to the linearized equations defining the equilibrium. In or-

der, these are the Bellman equation, the transition law for the population distribution,

and the law of motion for the function-valued shock to the distribution of amenities.

Derivatives expressed in this form may be used to solve for the linearized dynam-

ics and responses of the state variables of the model to endogenous and exogenous

changes.

2.3 Implementation and Evaluation: Spatially Ho-

mogeneous Case

In the case of an economy with a geographic structure which is spatially homogeneous,

in the sense that all locations are completely identical, with the relationship between

any two locations dependent only on the distance between them, several analytical or

partially analytical results can be derived regarding the dynamics of the economy. In

particular, using the functional linearization techniques of Chapter 1, for which the

sufficient conditions can be easily verified in this model, explicit formulas for the local

dynamics in a neighborhood of the nonstochastic steady state can be constructed,

and the dynamic stability of this process can be evaluated. The law of motion can

also be calculated with negligible loss of precision using the numerical approximation

techniques introduced in that chapter in order to provide a unified methodology

with the case, explored in the subsequent section, where a less stylized but also less
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analytically tractable geographic structure is introduced.

2.3.1 Steady State and Exact Projections

To go from the functional derivatives of the equilibrium conditions to a linear solution,

it suffices to find projections onto a complete set of basis functions. The structure

of the model makes that task particularly simple, because when the basis used is the

standard Fourier basis of trigonometric polynomials, the projections can be calculated

exactly without numerical integration. The structure can also be used to verify the

conditions which ensure that projection approximations are valid. In fact, the struc-

ture allows even more to be said about the solution than can be inferred from (1.1).

Because the model is block diagonal with respect to the Fourier basis, the solution

operator can be calculated exactly for any input given by a Fourier basis function,

and so for any bandlimited function.

The linearized equilibrium conditions in this model are given by equation (2.8), in

which P [.] =

1

¯f

´
exp(c(x0 � x) + � ¯V )[.]dx0, � is likewise an integral operator, and d!

d�

can be shown to be defined in terms of the composition of a number of convolution

operators with respect to a Laplace distribution and their inverses. As can therefore be

seen, the model is composed of identity and integral operators, exactly the structure

needed for the projection approaches developed in the first chapter of this thesis to

be valid. Moreover, examining the expressions for the derivatives of the economic

geography model it can be seen that all of the integral operators are expressed in

terms of convolution operators. By the convolution theorem, all convolution operators

(and their inverses, as well as the identity) are diagonal in a Fourier basis, and so

all operators can be expressed as a convolution with distributions, or equivalently, as

multiplication of the Fourier transform of the input by a known function.

Because each functional derivative in the model is diagonal with respect to the

Fourier transform, the model can be broken down into blocks corresponding to in-
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dividual frequencies: there is no interaction across frequencies. Within a frequency,

the linearized model can be written in terms of 3⇥ 3 matrices of derivatives of each

component with respect to perturbations at that frequency. The exception is at fre-

quency 0, where only derivatives with respect to V and ⌫ are taken, as, by Parseval’s

theorem, functions L2

0

(R) can be represented in the Fourier domain as sequences of

Fourier coefficients with the coefficient at frequency 0 equal to 0.

Among other things, this block diagonal structure implies that Condition 1.(ii)

regarding the modulus of continuity of the Schur decomposition holds so long as Con-

dition 1.(i) holds. Conditions 1.(i) and 1.(iii), requiring existence and uniqueness of a

Schur decomposition into components inside and outside the unit circle with unstable

subspace isomorphic to the space spanned by the jump variable (in this case V ), may

also be verified for any given set of parameters by ensuring the conditions hold for

each finite-dimensional subsystem. In order for the system to have a locally stable

rational expectations equilibrium, it must be the case that at each frequency, the

system has two generalized eigenvalues inside the unit circle, corresponding to the

predetermined variables ⌫ and �, and one generalized eigenvalue outside, correspond-

ing to the jump variable V . Such a condition is not general: it requires restrictions

on the parameter values to ensure that such a solution exists.

Impressionistically, because the value of a location is a weighted average of future

wages (a function of population), and because the current population is a weighted

average of past values, the system remains stable only if this mutual reinforcement is

not too strong. Otherwise, at certain frequencies, at which more than one eigenvalue is

unstable, the linearized model implies that value grows without bound and population

does as well: this is the conclusion of Krugman (1996), which does not derive dynamics

from forward-looking decisions. However, the stability condition on the eigenvalues

is substantially weaker than the condition imposed by Krugman, that the impact of

population on wages be negative for all frequencies. Positive feedback is consistent
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with stability of a rational expectations equilibrium so long as the effect on wages is

expected to be temporary. Moreover, if the feedback is temporary, the population

response is damped, and so the degree of mutual reinforcement is even lower. As a

result, only frequencies where the parameterization implies that the feedback from

population to wages is so large that no policy rule which eventually returns to steady

state can be constructed are a problem for calculating a forward looking solution.

To consider which frequencies might be problematic, note that at extremely high

frequencies, because convolution with a smooth density dampens high frequency fluc-

tuations, the mutual reinforcement phenomenon is dampened and eventually disap-

pears, so these frequencies are stable. Similarly, due to the dispersive forces in the

geographic equilibrium model, at extremely low frequencies, increasing population

actually reduces wages, ensuring stability. It is at intermediate frequencies where

population growth and real wage growth are complementary, and parameters must

be chosen so that at these frequencies the degree of complementarity is not so great

as to prevent the mean-reversion induced by the dispersion of population due to

idiosyncratic tastes from ensuring eventual return to uniformity after a temporary

shock. This suggests that a parameterization of adjustment costs which ensures that

medium to high frequency fluctuations are rapidly smoothed out is needed. However,

degree of smoothing and size of adjustment costs have a nontrivial relationship. For

quadratic costs, a higher scale is equivalent to a smaller variance of the Gaussian flows

and so results in less smoothing. However, while changing from quadratic to linear (in

absolute distance) costs results in Laplace flows with substantially more movement

to long distances as it lowers costs of moving large distances, it raises costs of moving

short distances and so decreases mean reversion at medium to high frequencies. In

practice, stability holds for a very broad range of parameter values.

Formally, at each frequency not equal to 0, the model is represented by a 3 ⇥ 3

block of the Bellman equation, the population transition, and the shock transition at

74



that frequency. At a representative frequency �, the model can be taken as a set of

matrix equations in Fourier transform of the vector of endogenous functions at that

frequency. The matrix of derivatives with respect to (

ˆ��, ⌫̂�, ˆV�) is

B� =

2

66664

0 0 1

ˆP� 0 � ˆP� � � ˆP 2

�

0

ˆ

�� 0

3

77775

where ˆP� is the Fourier transform of 1

¯f
exp(c(x)+� ¯V ) evaluated at frequency � and ˆ

��

is the Fourier transform of �(x) evaluated at frequency �. The matrix of derivatives

with respect to (

ˆ�0�, ⌫̂
0
�, ˆV 0

�) is

A� =

2

66664

ˆd!
d� �

1 � ˆP�

1 0 0

0 1 0

3

77775

where ˆd!
d� �

the Fourier transform of d!
d�

at frequency �, is derived in Appendix C.

Finally, at frequency 0, by dropping the transition equation which does not act

over this frequency because perturbations of � are restricted to lie in L2

0

, the space of

functions integrating to 0, to ensure that the density � integrates to 1, the system is

represented by 2⇥ 2 blocks of derivatives with respect to (⌫̂�, ˆV�) and (⌫̂ 0�, ˆV 0
�) given

by

(B
0

, A
0

) =

0

B@

2

64
0 1

ˆ

�

0

0

3

75 ,

2

64
1 � ˆP

0

1 0

3

75

1

CA

To construct an approximate solution from these projections, note that because

the operator pairs are block diagonal, a fully upper triangular infinite-dimensional

system can be constructed so long as each block can be placed in upper triangu-

lar form. Together, each pair of matrices forms a finite-dimensional linear rational
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expectations system which can be evaluated by standard algorithms for calculating

perturbative expansions of such systems, such as the Schmitt-Grohe & Uribe (2004)

procedure, based on the algorithm of Klein (2000). Here, no changes need to be

made to the finite-dimensional procedure: it is simply applied independently at each

integer frequency �. The derivatives of the policy functions are then given by the

collection of derivatives at each frequency. For each � 6= 0, the policy functions

ˆh� : (

ˆ��, ⌫̂�) ! (

ˆ�0�, ⌫̂
0
�) and ĝ� : (

ˆ��, ⌫̂�) ! ˆV� are given by 2 ⇥ 2 and 1 ⇥ 2 matri-

ces. The first order approximate policy operators are then represented with respect

to the Fourier basis as block-diagonal infinite matrices ˆh and ĝ, with ˆh� and ĝ� on

the diagonals, respectively, so that for general inputs in L2

0

(R)⇥L2

(R), they may be

represented as h = F�1

ˆhF and g = F�1ĝF where F is the Fourier transform and

F�1 is the inverse Fourier transform.

For bandlimited perturbations, a finite representation hK
x , gK

x given by concate-

nating the first K frequencies is exact. More generally, the functional derivatives gen-

erated by taking an increasing finite collection of frequencies converge in the strong

operator topology, and for any components which are compact, in the operator norm

topology. Operator norm convergence follows from application of (1.1). To see that

the conditions are met, note that for smooth adjustment costs and transition func-

tions, ˆP�, ˆ

��, and ˆd!
d� �

converge to 0, and so compactness and convergence of the

projected derivatives in operator norm follows. Moreover, as � ! 1, (B�, A�) con-

verges to

(Bi
I , A

i
I) =

0

BBBB@

2

66664

0 0 1

0 0 0

0 0 0

3

77775
,

2

66664

0 1 0

1 0 0

0 1 0

3

77775

1

CCCCA
,

and by the continuity of the generalized Schur decomposition with respect to per-

turbations, so do the policy functions at each frequency. It can be shown that the

first derivatives of the policy functions gi
x = ĝ1 : (

ˆ�1, ⌫̂1) ! ˆV1 and hi
x =

ˆh1 :
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(

ˆ�1, ⌫̂1) ! (

ˆ�01, ⌫̂ 01) generated by calculating the finite-dimensional linear rational

expectations solution for this pair are given by matrices which are identically 0, and

so hK = hK
x and gK = gK

x . As a result, by taking an increasing set of frequencies, the

finite representation can be used to compute a response which is accurate uniformly

over all input functions, and not just bandlimited ones.

It is possible to determine the rate of convergence directly from the exact repre-

sentations rather than by applying the rate results from (1.1). Note that perturbation

results for generalized eigenvectors and eigenvalues imply a linear rate of convergence

in the Frobenius norm of the perturbation (see Stewart & Sun (1990)), while suffi-

ciently smooth functional forms for adjustment costs and for the transition operator

for the exogenous shocks, and the exponential form chosen for trade costs, generate

rates of convergence for the entries which are faster than linear in �. As a result, given

sufficiently smooth parameterizations, the blocks of the policy function corresponding

to each frequency converge at a rate comparable to the slowest rate of each of the

components. So long as this converges to 0, this implies that the policy operators

are compact (and if this rate is faster than linear, they are Hilbert-Schmidt), and so

the policy operators given by taking an increasing finite sequence of blocks converge

to the true policy functions in operator norm. One note regarding the form of this

convergence is that the perturbation theorem for the Schur subspaces applies only

under a separation condition on the generalized eigenvalues, while (Bi
I , A

i
I) has the

generalized eigenvalues (0,1,1). This implies that the blocks corresponding to for-

ward and backward looking components are well separated, while within the block of

backward looking components the eigenvalues are not asymptotically well separated

and the generalized Schur vectors are not stable. However, the block itself is stable

in the sense that the span of the Schur vectors converges, and so the policy functions,

which are determined only by the sub-blocks of the Schur matrices, also converge.

Formally, this may be stated as
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Lemma 2.1. (i) gi
x = ĝ1 = (0, 0), hi

x =

ˆh1 =

0

B@
0 0

0 0

1

CA Suppose

�� :=

��
(B�, A�)� (Bi

I , A
i
I)

��
F
! 0

as |�|!1. Then kĝ� � ĝ1kF = O(�
1
2
� ) and

���ˆh� � ˆh1
���

F
= O(�

1
2
� ) for large |�|, and

so converge to 0 and

h[�(x), ⌫(x)] =

ˆh
0

[

ˆ
⌫(x)dx]+

X

�2Z\{0}
(

ˆh�

2

64

´
exp(�2⇡i�x)�(x)dx
´

exp(�2⇡i�x)⌫(x)dx

3

75)�

2

64
exp(�2⇡i�x)

exp(�2⇡i�x)

3

75

and

g[�(x), ⌫(x)] = ĝ
0

[

ˆ
⌫(x)dx] +

X

�2Z\{0}
(ĝ�

2

64

´
exp(�2⇡i�x)�(x)dx
´

exp(�2⇡i�x)⌫(x)dx

3

75) · exp(�2⇡i�x)

are compact. (ii) Suppose in addition that �� = O(|�|�(1+✏)
) for some ✏ > 0. Then

h[�(x), ⌫(x)] and g[�(x), ⌫(x)] are Hilbert-Schmidt.

Proof. See appendix.

This result not only gives compactness and rates of convergence, it also implies

that the approximated policy operators converge in a stronger norm, the Hilbert

Schmidt norm. The demonstration that these operators are compact and Hilbert-

Schmidt implies that in principle, the policy function in this model could be consis-

tently estimated from a time series of observations of (�, ⌫) by procedures such as

those described in Bosq (2000); Guillas (2001).
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2.3.2 Calibration and Numerical Evaluation

To characterize the dynamics of population and values in the model, I calculate

the first derivatives of the policy operators for a fixed set of parameters. For the

adjustment cost function c(x), in order to generate a Gaussian conditional distribution

of population movements in steady state, I adopt a quadratic specification c(x) =

1

2�
c

x2, where �c parameterizes the cost of moving and is also the standard deviation of

the conditional Gaussian distribution. For the kernel describing the persistence of the

exogenous shocks �(x), in order to ensure both stationarity and decay of coefficients

to represent smooth diffusion of shocks from their initial locations, I choose a rescaled

Gaussian pdf, �(x) =

k�p
2⇡��

exp(� 1

2�2
�
x2

), where |k
�

| < 1 ensures stationarity at all

frequencies and �
�

measures the speed at which shocks spread, or, more directly, how

rapidly the autoregressive coefficient on each frequency goes to 0 as the frequency

increases.

For the static equilibrium of the model, I borrow parameterizations from Krugman

(1996), who considers the ranges � 2 {4, 5, 6}, µ 2 {0.2, 0.3, 0.4}. As within this

range the qualitative behavior of the model is similar, all experiments reported are

carried out with � = 4, µ = 0.4. While the trade cost parameter ⌧ is left unspecified

in the parameterization as it merely normalizes the unit of distance in the model,

the relative values of ⌧ , �
�

, and �c determine the characteristic length scales at

which trade, productivity (or other shock) diffusion, and migration operate. Note

however that because trade costs are specified as exponential, while migration and

productivity diffusion follow a Gaussian and so squared exponential rate of increase

in distance, that the numbers are not directly comparable. This specification implies

that trade at long distances is relatively less costly than migration or diffusion of

changes in the economic environment. While difficult to place on a comparable scale,

this seems to be qualitatively reasonable for a global or national scale, with long-

distance exchange relatively common while long distance migration is comparatively
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rare. For the purposes of simulations, and without any claim to represent empirically

reasonable values, simulations set ⌧ = 0.2, �
�

= 0.04, and �c = 0.05, representing

again fairly small trade costs and fairly slow diffusion of population and amenity value

from an initial location. Along with a value of k
�

= 0.98 and discount rate � = 0.96,

these are designed to ensure that fluctuations in the spatial distribution of population

and amenity values are persistent and that the model generates substantial variation

in the expectations of future distributions.

While in principle a closed form is available for the policy functions at each fre-

quency for arbitrary parameter values, it is an unintuitive nonlinear function of the

roots of a cubic polynomial, so instead we verify the stability conditions at each fre-

quency numerically. By the stability of the system at (Bi
I , A

i
I) and the convergence

of (B�, A�) to (Bi
I , A

i
I), it is sufficient to verify the eigenvalue condition for the finite

set of frequencies where the derivatives differ by more than some small constant from

(Bi
I , A

i
I).

In practice, and in contrast to the generically explosive limit generated by the ad-

hoc dynamics imposed in Krugman (1996), only for relatively extreme parameteriza-

tions does the model with forward-looking decision making lack an equilibrium which

is locally stable. The complementarity between wages and population at intermediate

frequencies generated by agglomerative forces in the model and the substitutability at

low frequencies generated by the dispersive forces are reflected in the cross-derivatives

of the transition operator ˆh mapping shocks to living standards and population this

period to those next period. The complementarity and substitutability manifest as a

positive coefficient in the map from the shock ⌫̂� to amenity value today to population

tomorrow at intermediate frequencies and a negative coefficient at low frequencies,

respectively. However, the presence of a positive coefficient does not generate explo-

sive behavior if the shock itself is mean-reverting, as assumed, and the autonomous

dynamics of population are also stable. Here, except when the elasticity of substitu-
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tion across varieties � is extremely low so the benefits of agglomeration in a region

with large population and a large variety of goods is high, the natural smoothing of

population across regions generated by heterogeneous idiosyncratic preferences is the

dominant determinant of the speed of adjustment of population at a given frequency.

As a result, even for very strong agglomerative forces, it is also necessary for adjust-

ment costs of moving to be quite large before complementarities at some frequency

dominate and generate dynamics which are locally unstable.

In part, this expresses an important difference between the myopic and forward-

looking models. In the myopic case, even small complementarities result in a cumu-

lative process which continues without bound, while in a forward looking setup, if

the effects of such complementarities are transient, their impact on value and so on

decisions is bounded and so is attenuated. From an economic perspective, forward-

looking decisions respond less strongly to changes perceived as temporary, and so

even in the presence of complementarities, regional shocks need not be destabiliz-

ing. To be fair, however, some of the difference also reflects the additional dispersive

force provided by idiosyncratic preference shocks, though it’s not clear how one would

generate a smooth transition law as in Krugman (1996) even with myopic decision

making without some other smoothing force.

2.3.2.1 Finite Domain

While solving the model on an infinite domain ensures a great deal of tractability,

it has some disadvantages, of which lack of realism is a minor but nontrivial one.

From the perspective of demonstrating existence, compactness of the domain permits

the use of standard existence theorems which are unavailable on unbounded space.

Further, when approximating the integrals via an expansion in basis functions other

than trigonometric polynomials, as may be needed for nonperiodic variations of the

model, it permits use of compactly-supported basis functions, such as B-splines or
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(certain classes of) wavelets, without requiring an unbounded number to cover the

entire domain.

In the symmetric case, the loss of tractability is rather minor: by setting G to be a

circle of circumference 1 with coordinates x 2 [0, 1) parameterizing the location1 and

changing the normalizing constant ⌧(��1)

2

to ⌧(��1)

2�2e�⌧(��1)/2 in formulas (2.4) and (2.5),

it can be easily seen that the steady state equilibrium remains uniformly distributed

with ¯�(x) = !̄(x) =

¯W (x) =

¯T (x) = 1 8x 2 G, and ¯V (x) constant. The only

material difference to the dynamics is that now instead of convolution with a Laplace

or Gaussian distribution as the representation of the effect of population on wages or

the dynamics of ⌫(x) or �(x) respectively, these operators are replaced by convolution

with truncated (and recentered and renormalized) Laplace or Gaussian distributions,

e.g. �(x) =

1

1�2�(

1
2 )

k�p
2⇡��

exp(� 1

2�2
�
(x� 1

2

)

2

)1[0  x < 1] . This reflects the economic

structure of the problem: in a finite space, there is a finite maximum trade cost and

finite maximum migration cost, and so a minimum impact of one location on another.

Truncation does not change the ability to represent the operators as diagonal with

respect to a Fourier basis, though now the result holds by the circular convolution

theorem. The Fourier transform of a product is given by the convolution of the Fourier

transforms, and so, by a change of variables, in the derivation of d!
d�

, H(�) is replaced

by H(�) ⇤ Sinc(�), where Sinc(�)= sin ⇡�
⇡�

is the Fourier transform of 1[�1

2

 x < 1

2

].

While this convolution has no simple closed form expression, it is easily calculated

numerically by quadrature.

For parameterizations with rapid increase in trade or migration costs over dis-

tance, this transformation has minimal effect, as the truncation only affects the far

tails. For small trade or migration costs, it increases impact at some frequencies and

decreases it at others, reflecting the periodicity induced by the circular shape. Nu-

merical experiments suggest that even for relatively small costs, the impact of this
1By symmetry, the initial point 0 can be assigned to any arbitrary location.
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change is limited. As a result, the main impact is on ensuring proper scaling and

allowing testing approximate equilibrium computation using a wavelet basis.

Due to the relatively high cost of constructing the numerical integrals needed to

evaluate the convolutions with the sinc function, and for comparison with the inho-

mogeneous case, it is also convenient to construct a representation using the wavelet

based numerical approximation techniques of Chapter 1. To represent the circular

convolutions with respect to a wavelet basis, the operators are first written in terms

of the distance on a circle with x0 � x replaced with arc length along the diameter of

the circle: d(x0, x) = mod(x0�x+

1

2

, 1)� 1

2

is the distance between points x0, x2 [0, 1)

on the circumference. For example �[⌫](x0) =

´
1

0

�(d(x0, x))[⌫(x)]dx describes the

value of the amenity value ⌫ 0(x0) next period at each point x0 2 [0, 1) given an initial

distribution ⌫(x). Construction of wavelet approximations consists of sampling the

kernels (e.g. �(d(x0, x))) at an evenly spaced grid of K ⇥K points on [0, 1) ⇥ [0, 1)

and applying the discrete wavelet transform to the rows and columns of the resulting

matrix. The kernels used in this model are infinitely differentiable at most values of

x, y but nondifferentiable at d(x, y) = 0.5 due to the finite domain creating a maximal

possible level of trade or migration costs at the antipodal location on the circle where

counterclockwise or clockwise movements meet. For the exponential trade costs, there

is also a point of nondifferentiability at d(x, y) = 0. For wavelet representations, there

is a tradeoff between vanishing moments to represent the smooth parts parsimoniously

and width of the scaling function which creates distortions at nonsmooth points. Al-

though higher order Coiflets will achieve faster rates asymptotically, for finite values

of K, lower order Coiflets may yield better performance, which is borne out in nu-

merical experiments. As a compromise, level 3 Coiflets are used in all simulations

and evaluations.

Two additional sets of approximations are made beyond those described in Chapter

1 Equation (1.2). To ensure that perturbations to the population distribution �(x)
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remain in the space of mean 0 functions, the wavelet representations of operators

acting on this space are orthogonalized with respect to the the wavelet representa-

tion of the constant function. While for Haar wavelets this demeaning is exact, for

other bases it yields a representation which is approximately orthogonal to constants.

Rather than defining the exact kernel for d!
d�

and applying the wavelet transform to

it directly, because it is composed of convolutions with a Laplace distribution and

identity operators, it may be constructed by applying the products and inverses of

the wavelet representations of these operators. Because all applications are continu-

ous (note that the inverse is applied to a sum of identity and convolution operators

and so is well posed), so long as the convolution operators themselves are consistently

approximated, d!
d�

is as well.

2.3.3 Results

To evaluate the approximation algorithm, several numerical comparisons are per-

formed using both the Fourier and the wavelet representations of the model, at differ-

ent levels of K. Accuracy can be compared for impulse responses to function-valued

shocks, as well as for simulations. Although the Fourier representation is exact in

principle, at least for bandlimited functions, when restricted to a finite domain, the

value of the Fourier coefficient at each frequency must be computed by quadrature

due to the convolution with the sinc function. Nevertheless, the Fourier and wavelet

methods appear to exhibit a high degree of agreement, whether expressed in squared

error norm over the grid points (a proxy for L2 norm, controlled by the theory) or in

maximum norm over grid points (not controlled by the theory). Error is largest for

components which are strongly impacted by the finite diameter of the geography, and

declines for parameter values which ensure that the cutoff has limited effect on the

representation, suggesting that the numerical error induced by quadrature may be

a non-negligible factor contributing to the discrepancy between Fourier and wavelet
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representations. For the Fourier representations, integer frequencies �K
2

to K
2

are

used for each of J = 3 functions ⌫(x), �(x), and V (x), giving 3 ⇥ (K + 1) basis

functions, for symmetry, while for wavelets K grid points are used to represent the

scaling function coefficients for each function, with K given by a power of 2.

To describe the behavior of the model, first consider the impulse response to a

smooth but spatially localized shock "(x) to the amenity value of locations, a scaled

Gaussian spike centered at location 0.5, with functional form exp(50000(x � 0.5)

2

).

This may represent a nearly exactly localized improvement, as might occur in response

to a local policy initiative or favorable productivity shock. As can be seen in Figure

(2.3.1), the response of amenity value over time and space, calculated from K = 1024

using the Fourier representation, in spite of the high persistence parameter k
�

and

the relatively small standard deviation of the diffusion kernel �
�

, this shock spreads

out rapidly from the initial location and diffuses from a local region to an eventually

larger and larger area. Note that while the space coordinate is represented on a line

segment, the model is defined over a circle, so the edges are connected.

The population response, displayed in Figure (2.3.2), follows the amenity shock

but is much more dispersed, and responds slowly, peaking over 10 periods later and

then declining gradually. The population in regions far from the center declines, as

people move towards the more desirable area, with a nadir over 20 periods later. De-

spite the slow speed of adjustment, movements begin the first period after the shock,

as individuals anticipate the spread of the amenity over space and the possibility of

moving in the future to more desirable areas, which are desirable in part because they

provide the option value of moving even close to the center in future at lower cost

and so taking advantage of the improved amenity there. This is displayed clearly in

the plot of welfare, Vt(x) in Figure (2.3.2), which jumps immediately, with peak at

the location of the shock but high values substantially more broadly dispersed, with a

nontrivial jump in welfare over the entire domain, as even regions for which the value
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Figure 2.3.1: Impulse Response of ⌫t(x) to "
0

(x) = exp(50000(x� 0.5)

2

)

of the shock immediately and in the first few periods is essentially negligible face the

prospect of higher welfare in the future as the amenity spreads out and population

moves to regions positively affected by the shock.

To consider the behavior of the model in response to more complex patterns

of input, I use it to produce simulated time paths. The shocks "t(x) are drawn

from a spatially correlated Gaussian process, a simulated fractional Brownian motion

(started at 0) with Hurst parameter 0.7 and so a degree of Hölder regularity no

greater than 0.7. Wavelet quadrature is easily capable of representing functions with

this degree of regularity and so the simulations are drawn from the representation of

the model with respect to a wavelet basis, with K = 512. The dynamic law of motion

is defined in terms of the dynamics of �t(x) and ⌫t(x). In order to simulate also the

implied paths of real and nominal wages and prices, !t(x), wt(x), and Tt(x), which

are deterministic functions of �t(x), it is possible to either use the linearized version of

the deterministic function, or simply plug the simulated value of �t(x) into Equations
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Figure 2.3.2: Impulse Responses of �t(x) & Vt(x) to "
0

(x) = exp(50000(x� 0.5)

2

)
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(2.3)-(2.6): to the extent that the simulated values of �t(x) are only accurate to first

order due to linearization, the latter procedure does not reduce the order of the error,

but may eliminate a source of higher-order bias (and also does not require computing

implicit functional derivatives) and so is used for the simulations shown. Time paths

are displayed in Figures (2.3.3), (2.3.4), and (2.3.5).

One feature which stands out is the low degree of smoothness of ⌫t(x), the persis-

tent shock process, and Vt(x), the welfare of residents at each location x, in contrast

to the fairly high degree of smoothness of population movements �t(x). This contrast

is as should be expected, because Vt(x) is a jump variable, and so adjusts immediately

to reflect changes in the state, while population is a predetermined variable, and so

changes only in response to expected future changes in welfare, which, because shocks

to amenity value are expected to be smoothed out over time, substantially discounts

the high frequency variations which impart roughness to the spatial distribution of

current welfare. This is in line with standard reasoning for rational expectations

decision problems: because moving is costly, transitory variation, expressed by the

rough local movements in amenity values, has minimal effect on forward looking

decisions. In contrast, low frequency changes, which are expected to be more persis-

tent, do induce population movements, and the simulation does show periods of time

where there are large population movements between regions. The simulation also

exemplifies the expressive power of functional methods, as it allows description of the

welfare and behavioral consequences of extremely finely detailed patterns of aggregate

shocks, which would be difficult to express even with smooth nonparametric function

representations, let alone low-dimensional parametric approximations.

The path of real wages displayed in the simulations tracks the population distri-

bution quite closely: there does not appear to be a substantial degree of inter-regional

interaction which could in principle result in wage patterns that differ in shape from

the population patterns. This suggests that at the parameter values chosen, the ef-
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fects emphasized by Krugman (1996) in which trade costs can cause global patterns

by inducing a strong response at a particular range of sinusoidal frequencies, do not

appear to be a major influence. Breaking the real wage down into a nominal wage and

a price index, as displayed in Figure (2.3.5), shows that both components contribute

essentially similar response shapes, with high population areas facing both higher

nominal wages due to increasing returns production technology and lower costs of

living as these areas are also located closer to more productive regions and so face

a lower shipping cost for the bundle of goods that they consume. The combination

of these effects yields what appears to be an extremely strong positive impact of

population shocks on local wages.

As overviewed in Piyapromdee (2015), the empirical literature which has exam-

ined the local wage response to plausibly exogenous migration flows finds a range of

responses from small positive effects on wages to moderate negative effects on wages

for some population subgroups depending on a variety of specification and data issues

which the current model is not rich enough to capture, but large positive effects do

not seem to be empirically plausible. As this is the main economic mechanism in-

ducing agglomeration in Krugman-style geography models, this suggests a potentially

important empirical shortcoming. A number of plausible changes may help to rec-

oncile the agglomeration effects with this counterfactual prediction regarding wages.

First, the wage evidence mostly describes short run impacts, while geography models

have been used to describe changes over decades or even longer, and so may omit

certain features of the adjustment process. The assumption of increasing returns,

which induces a positive wage response to a local increase in labor supply, derives

from free entry of firms producing new varieties. If entry response takes time, or if

production requires capital accumulated locally, increasing returns may be a better

description of long run than immediate behavior. The agglomeration externalities

may also in part come through endogenous response of non-wage amenities, as in
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Diamond (2016), which would still induce agglomeration but would not be measured

in wage response. The precise effect of such modifications on the dynamics may be

nontrivial, as any change in the speed of wage response will also induce a qualitative

as well as quantitative change in the response of migration flows.

2.4 Spatially Inhomogeneous Case

In order to examine the behavior of population, wages, and welfare in situations

where locations are not ex ante identical, it is necessary to move from closed form to

numerical characterizations of dynamics. In realistic geographic settings, there are

a variety of sources of persistent heterogeneity which introduce asymmetries in the

response of economic activity and population across regions in addition to the pos-

sibility of spatially inhomogeneous shocks. I will consider in particular three sources

of heterogeneity, though others are possible even in the context of the model pre-

sented above. These are differences in trade costs between location pairs, differences

in migration costs between location pairs, and patterns of diffusion across space of

innovations affecting desirability of different locations (either through wages or ameni-

ties) which differ across location pairs. Differences in trade costs may reflect policy, as

in the presence of tariffs or other trade barriers, geographic features which influence

transportation costs, either natural such as rivers or mountains, or manmade such as

highway or railroad networks, or information frictions. Migration costs may arise for

similar reasons. Sources of heterogeneity in diffusion vary depending on the source

of variation in desirability of different locations. For policy shocks it represents pat-

terns of policy spillovers between locations, for weather or natural variation it reflects

the physical processes underlying these dynamics, and for productivity it comes from

patterns of productivity spillovers. From the perspective of the model, these sources

of heterogeneity can be thought of as anything which affects the shape of the map
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Figure 2.3.3: Simulated Geographic Equilibrium: Amenities and Welfare
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Figure 2.3.4: Simulated Geographic Equilibrium: Population and Real Wages
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Figure 2.3.5: Simulated Geographic Equilibrium: Nominal Wages and Local Price
Index
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!(�(x)) between population and welfare, anything which changes the shape of the

law of motion of population given differences in welfare, and anything which affects

the shape of the shock transition process �[⌫]. As such, these variations may also re-

flect many other sources of spatial inhomogeneities, such as preference or technology

differences across regions.

One notable implication of heterogeneity across regions is that one may no longer

assume that a spatially homogeneous steady state exists, and the shape of the steady

state distributions is determined by the nonlinear features of the model. This affects

both the point around which the model is linearized and also the values of the func-

tional derivatives at that point. While equation (2.8) still characterizes the structure

of the derivatives around the steady state, the operators P , d!
d�

, and � composing this

solution differ. P is now given by
´

1

f(x, ¯V (.))
exp(c(x0, x) + � ¯V (x0)[.]dx0, where ¯V (.) is

no longer a constant, and so heterogeneity in the value induces an additional source of

asymmetry in the evolution of population. Effectively, this introduces a drift towards

persistently high value locations and away from persistently low value locations which

ensures that in addition to the gradual diffusion introduced by idiosyncratic popu-

lation movements which smooths out temporary fluctuations in population, there

is also systematic movement towards high value locations whenever the population

distribution is insufficiently concentrated in these high value regions. The term d!
d�

takes a slightly more complicated form, now no longer separable into frequency bands

reflecting the systematic influences of locations at fixed distances, as the effective dis-

tances are made irregular and origin specific both by the presence of variable trade

costs and also by differences in steady state population and wages, which affect the

response of local labor and product markets.

To calculate steady states numerically, I propose a heuristic iterative procedure,

“Algorithm” (3), based on contraction mapping principles, to solve the system of

nonlinear operator equations generating the steady states. In general, such iterative

94



methods require that the operators be contractions, or satisfy similar conditions, to

be guaranteed to converge, in addition to the obvious requirement that a steady

state exists to converge to. These properties are in general parameter dependent:

Allen & Arkolakis (2015) provide a characterization of existence and uniqueness of a

steady state in a model which is essentially identical to the one provided here, up to

a change of variables. It should also be noted that even in the absence of guarantees,

a fixed point induced by the method will approximately satisfy all the equations for a

steady state, up to a user-determined tolerance ✏. In practice, for all parameter values

tested, the method converges and does so rapidly (in no more than 5-6 seconds, with

a tolerance of 10

�15) so long as the trade and migration costs are strictly nonnegative.

While a realistic calibration is outside the scope of this chapter, it is possible to

construct a broad variety of reasonably complex spatial patterns, albeit still on the cir-

cle, by using randomly generated cost functions drawn from a stochastic process. To

generate patterns of costs which might reflect certain features of trade and transporta-

tion costs, I consider cost functions constructed by the methods of Allen & Arkolakis

(2014), who consider bilateral trade costs functions given by choosing a path between

locations which minimizes the weighted effective distance computed as the integral

over the path of location-specific transportation costs along that path. This results in

a symmetric cost function reflecting optimal choice of transportation route. To con-

struct bilateral cost functions, I therefore draw location-specific transportation costs

for each location on the circle from a strictly nonnegative stochastic process, then for

each location pair find the cost reflecting the optimal path. I choose for the stochastic

process a small positive constant (0.2 in the simulated examples) plus the square of

a Gaussian process with exponential covariance kernel Cov(x, z) = exp(�d(x, z)), as

this induces a path which is bounded away from 0 and with probability 1 is Hölder

smooth of any finite order, by Kolmogorov’s continuity criterion (see, e.g. Hairer

(2009) Theorem 3.17).
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Algorithm 3 Iterative Method to Construct Steady State
Input: Model Parameters, Trade costs ⌧(x, z), Migration Costs c(x, z), K number of
grid points, ✏ > 0 tolerance
Output: Approximate discretized steady state functions ¯�(x), ¯V (x), !̄(x)

1. Discretize operators (2.1)-(2.7) along K-point dyadic grid

2. Conjecture strictly nonnegative �a(x)

3. Iteratively solve Hammerstein equations (2.3), (2.4), (2.5), (2.6)

(a) Guess initial w
0

(x)

(b) Apply (2.4), then (2.3), then (2.5) with �(x) = �a(x) to wn(x) obtain
wn+1

(x)

(c) Iterate until max |wn+1

(x)� wn(x)| < ✏

(d) Apply (2.6) to wn+1

(x) to obtain !b(x)

4. Iterate discretized Bellman equation Vn+1

(x) = T (Vn(x)) := !b(x) +

log f(x, Vn(x)) + � until max |Vn+1

(x)� Vn(x)| < ✏ to obtain Vb(x) = Vn+1

(x)

5. Iterate discretized transition equation (or calculate Frobenius eigenvector)
�n+1

(x) =

´
exp(c(x,z)+�V

b

(z))´
exp(c(x,z)+�V

b

(z))dz
�n(x)dx until max |�n+1

(x)� �n(x)| < ✏ to ob-
tain �b(x) = �n+1

(x)

6. If max |�a(x)� �b(x)| > ✏ �a(x) �b(x), Return to 3, else go to 7

7. ¯�(x) �a(x), ¯V (x) Vb(x), !̄(x) !b(x)
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Figure (2.4.1) displays the resulting steady state function values of ¯�(.), ¯V (.),

and !̄(.) for independent random draws of cost functions c(x0, x), ⌧(x, z) from the

process described above at 512 grid points, scaled by 4/512 for ⌧(x, z) and 4/(3⇥512)

for c(x0, x), and with all other parameters identical to those used in the numerical

simulations for the spatially homogeneous case. As can be seen, trade and migration

costs induce concentration of population in steady state. Population is generally

denser in areas with high steady state welfare and lower in areas with low steady

state welfare, though the correlation is imperfect due to migration costs which differ by

location. Also notable is that the distribution of wages and the distribution of welfare

are far from perfectly correlated, even though in steady state welfare is determined

entirely by the expected present discounted value of wages, which are constant over

time. The reason for this is that, due to idiosyncratic shocks which induce movement

in steady state, individuals do not stay in a single location. As a result, the value

of a location includes not only its wages, but also the relative likelihood of moving

to a different area and the migration costs of doing so. This is one example of

how idiosyncratic volatility may make aggregate statistics misleading as indicators of

welfare or individual decisions, because individuals also consider the option value of

responding to idiosyncratic risks.

The spatially inhomogeneous case also produces quite different implications for

responses to aggregate shocks. To introduce richer dynamics, it is possible to utilize

a parameterization of the law of motion for the amenity shock process �(x, z) which

is also spatially inhomogeneous. For the purpose of constructing example IRFs and

simulations, I choose the function �(x0, x) =

k�´
exp(� 1

2�

2
�

(q(x0,x))

2
)dx

exp(� 1

2�2
�
(q(x0, x))

2

),

with q(x0, x) drawn independently from the same process generating ⌧(x, z). This

parameterization preserves the general shape and magnitude, but induces spatial

inhomogeneities in the degree of diffusion. It may be interpreted as amenities also

following a least cost diffusion path with respect to a randomly generated measure
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Figure 2.4.1: Simulated Spatially Inhomogeneous Steady State ¯�(.), ¯V (.), and !̄(.)

of local obstacles. In order to evaluate the behavior of the model in this case, it

is no longer sufficient to construct IRFs to shocks localized at a single point. As a

simple exhibition of the effects of inhomogeneity, I instead construct IRFs to the same

spatially Gaussian shock as used in the homogeneous case, but now centered at 0.1,

0.5, and 0.9. Graphs of Impulse response functions are displayed in figures (2.4.2),

(2.4.3),(2.4.4),(2.4.5),(2.4.6), and (2.4.7), respectively.

Notable features of the responses of ⌫t(.) include that while behavior begins lo-

calized and spreads out in each case, the spread is biased in one direction at 0.1 and

0.9, and spreads out more rapidly at 0.5. This may be part of the reason for the

difference in welfare responses. While the initial welfare response contains a highly

localized spike in the 0.1 and 0.9 cases, superimposed on a more diffuse bump around

the edges which does not differ substantially between the two cases, it is substan-

tially more diffuse in the 0.5 case. More interestingly, despite the differences in the

shocks and welfare responses, the population response is qualitatively similar in all

cases: population grows near the edges of the map and shrinks at the center. This
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is particularly remarkable in the 0.5 case since the area which loses population is

also the area which gains the most in amenity value. This seems to reflect a global

structure induced by the costs to trade, migration, and diffusion. The structure can

also be seen to some extent in simulations of the process, drawn with the same pat-

tern of shocks as in the spatially homogeneous case, displayed in Figures (2.4.8) and

(2.4.9), which display the simulated deviations from steady state. While the pattern

of amenity shocks is quite close to that from the spatially homogeneous case, as is to

be expected from the relatively similar diffusion law, the welfare distribution displays

greater variability in the center and at the edges than in between, a pattern also ob-

served in the impulse responses of welfare to shocks, and the population distribution

also displays this pattern, substantially different from that in the homogeneous case,

with the large decreases and increases in population in response to shocks shifted to

the right, reflecting the greater unity of response of the regions near the edges in this

case.

Another notable feature of the impulse responses in this case is that while re-

sponses to aggregate shocks can show substantial differences based on the location of

the effects of the shock in the short run, in the medium run, many types of shocks

display variation along a similar characteristic shape. The reason for this is that the

long run behavior is dominated by the eigenvectors corresponding to the largest eigen-

values of the transition operator. In the homogeneous case, this usually corresponds

to very low frequencies. In the case with heterogeneity, this shape may be less regular.

It is also worth noting that this low dimensional variation is not necessarily aligned

with the functional principle components of the data generated by this model, which

are a function of both the shock covariance and the transition law. This suggests

that in high dimensional settings such as spatial models the information needed to

determine policy or causal effects may differ substantially from the data most useful

for prediction.
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Figure 2.4.2: Impulse Response of ⌫t(x) to "
0

(x) = exp(50000(x� 0.1)

2

)

2.5 Conclusion and Future Work

By incorporating a forward-looking migration decision into a quantitative model of

economic geography, it becomes possible to formulate hypotheses regarding the spatial

dynamics of population and economic activity in response to spatially heterogeneous

disturbances and evaluate the welfare implications of these movements at local and

global levels. In this chapter, we have provided a first attempt at investigating these

dynamics. The results from the dynamic model demonstrate the potential role of

anticipation of future changes in regional economic status in modulating both the

magnitude and direction of population movements, and also the effect of idiosyncratic

heterogeneity and steady state migration in spreading the welfare impact of local

changes over space, with migration acting as a form of insurance against otherwise

non-insurable regional shocks. They also show how the immediate and delayed effects

of a shock can differ substantially in a model with rich spatial structure, with the

immediate effects driven primarily by the properties of the shock itself, but the impact
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Figure 2.4.3: Impulse Responses of �t(x) & Vt(x) to "
0

(x) = exp(50000(x� 0.1)

2

)
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Figure 2.4.4: Impulse Response of ⌫t(x) to "
0

(x) = exp(50000(x� 0.5)

2

)

over the long term shaped substantially by the global features of the economy which

channel variation along certain spatial patterns, determined by the eigenfunctions of

the laws of motion.

A fully dynamic formulation also permits evaluation of hypotheses regarding the

origins of spatial inequality which rely on cumulative processes of divergence. In the

popular Krugman model of trade featuring trade costs, differentiated goods, increas-

ing returns, and traded and non-traded sectors, the interplay of agglomeration and

congestion externalities, steady state equilibrium features spatial concentrations of

population and economic activity whose location is determined in a nontrivial manner

by the global interplay of these forces with even small ex ante geographic differences.

This global equilibrium furthermore exhibits comparative statics which suggest that

this distribution may be sensitive to small changes in fundamentals, as the presence of

increasing returns induces a positive wage response to increases in population which

reinforces rather than dampens the initial population change. While particular form
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Figure 2.4.5: Impulse Responses of �t(x) & Vt(x) to "
0

(x) = exp(50000(x� 0.5)

2

)
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Figure 2.4.6: Impulse Response of ⌫t(x) to "
0

(x) = exp(50000(x� 0.9)

2

)

of the response is governed by the structure of production and trade imposed by this

model, a wide variety of sources of pecuniary and nonpecuniary spatial agglomeration

externalities have been documented since Marshall (1890) which likewise suggest that

population changes may be self-reinforcing.

A dynamic perspective adds a number of caveats to this class of static accounts of

regional heterogeneity. First, migration costs in the presence of steady state migra-

tion flows tilt the response of population to persistent wage differences both directly

by keeping people in some regions longer and indirectly by changing the desirability

of different locations. Moreover, as the comparative static effect is derived essen-

tially under the assumption of a permanent change, it need not reflect the impact

of a temporary shock, in which case, under costly migration, population may only

respond partially, and also temporarily. While this does not quite refute the ‘history-

dependence’ hypothesis, that small temporary shocks induced a self-reinforcing cycle

leading to long term regional differences, it does suggest that it is not quite as ro-
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Figure 2.4.7: Impulse Responses of �t(x) & Vt(x) to "
0

(x) = exp(50000(x� 0.9)

2

)
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Figure 2.4.8: Simulated Inhomogeneous Geographic Equilibrium: Amenities and Wel-
fare
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Figure 2.4.9: Simulated Inhomogeneous Geographic Equilibrium: Population

bust an implication of this class of models as previously hypothesized. In order to

obtain permanent differences from temporary shocks, one must either assume that

the self-reinforcing externalities are substantially larger than those needed previously

to induce such an explosive process, impose a substantially different decision process

which may not be forward looking, or to rely on the possibility of multiple steady

state equilibria, in which case there may exist dynamic rational expectations equi-

libria which differ from the local description of dynamics offered in this chapter and

may involve movement not confined to the neighborhood of any one steady state.

The model does provide a clear and testable empirical implication of local, if not

global instability, that can be examined without reference to the sources of this in-

stability. As the equilibrium can locally be described as a functional linear process,

instability takes the form of a nonstationary or explosive subspace in the time series of

population density functions, analogous to the unit root subspace described in Chang

et al. (2014). In the homogeneous case of Section 2.3 this corresponds to nonstation-

arity at a particular frequency: in more general cases as described in Section 2.4, it
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need not correspond to a particular basis function. Explicit tests of this hypothesis

may require extension of tests for explosive roots to the functional time series setting.

While the model and procedures introduced here represent a useful foundation for

studying the spatial dynamics of population and economic activity, precise answers

will require substantial further work. From a theoretical perspective, evaluation of

the relationship between history dependence and increasing returns may require ex-

tending from the local approach described here to a global approach which can be

used to evaluate dynamics in the case when multiple steady states may exist. From

an empirical standpoint, the model should be evaluated using empirically plausible

parameter values estimated using geographic data over different time periods to as-

sess the plausibility and magnitude of implied responses to regional shocks. It is

likely that matching these empirical responses may require reevaluation of some of

the dynamic features of the model. In particular, additional sources of individual

and local heterogeneity might be incorporated, and the structure of production and

trade, which is essentially static, may require the incorporation of dynamic elements,

such as capital or persistent relationships, to capture the time-series structure. In all

cases, the representation of the solution of dynamic models of economic geography

derived here as functional stochastic processes provides a reduced form framework for

evaluating and testing the empirical implications.
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Chapter 3

Solving Ill-posed Function-Valued

Rational Expectations Models

In linear dynamic stochastic economic models with function space variables, a ra-

tional expectations solution taking function-valued inputs to function-valued outputs

is defined by a decomposition, analogous to the generalized Schur decomposition of

matrices, of a set of operator equations into components. A computationally feasible

approximation of the solution may be constructed by projection on a set of basis func-

tions. But when the operators defining the equilibrium conditions are not compact,

the solution of the approximate system may fail to converge to the solution of the

true system. This failure arises from multiple breakdowns of continuity in the map

from approximation to solution. A solution is devised that enables components to

be constructed sequentially, applying regularization at each step. Due to the lack of

compactness, standard regularization methods for linear ill-posed inverse problems do

not suffice to ensure continuity, and inverses are instead constructed by uneven sec-

tion methods based on the generalized sampling technique of Adcock et al. (2014a).

Guidelines for tuning parameter selection are provided, and the performance of the

algorithm is demonstrated on an example model.
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3.1 Introduction: Motivation and Overview

Dynamic economic models with function-valued states, such as heterogenous agents

models where the distribution of heterogeneity evolves endogenously over time, are

an increasingly popular means of studying high-dimensional economic phenomena.

In order to make these classes of models tractable to analyze and compute, it is

common to make simplifying assumptions which require that the dynamics have an

“essentially” finite-dimensional character, so that a finite-dimensional approximate

model describes the dynamics reasonably well. This is the assumption, either implicit

or explicit, behind approaches based on approximate sufficient statistics or smooth

function approximation. However, there is a substantial range of possible dynamic

behavior in infinite dimensional spaces which simply cannot be described uniformly

well in a finite-dimensional context, and so may be considered as “essentially infinite-

dimensional.” In these situations, any finite dimensional description of the system, no

matter how large, may be substantially affected by some components which have been

left out of the approximation. At best this results in potential sources of fluctuations

which do not enter the model description. At worst, the dynamics even of the finite

dimensional component may be completely changed through their interactions with

the missing elements. Moreover, the class of models which exhibit this behavior

is in some sense generic, arising any time the fundamental structure describing the

dynamics is non-smooth.

In this paper, I ask what can be said about these kinds of models, and show that

while this high-dimensional structure makes some descriptive tasks difficult, a sub-

stantial amount can still be learned about their solutions. In particular, while the

non-compactness makes uniform approximation of the model by a finite-dimensional

representation impossible, the model can still be approximated pointwise. The solu-

tion which describes the dynamics implied by the model is not a continuous function
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of the pointwise approximation of the model, so the solution problem is ill-posed.1

However, this only means that a pure “plug-in” type estimator of the true solution

will not converge. Instead, by analyzing the properties of the map from model to

solution, which consists of multiple interdependent steps, it is possible to construct

a more careful approximation, which uses regularization to extract as much informa-

tion as possible from each step and pass it on to the next step, which again must use

regularization to handle the limited information coming from the previous step. The

final result is a procedure which eventually recovers the solution, which sometimes

may itself be a well-behaved object, even when the model that defines it is not.

Formally, this paper considers a generalization of the class of recursive linearized

rational expectations models with function-valued state variables described in Chap-

ter 1, which provides a coherent framework for characterizing the local behavior of

many economic models with continuous heterogeneity. The approach in that chap-

ter requires a set of conditions which limit consideration to models which are well-

behaved, in the sense that finite-dimensional approximations can be used to build

estimates of the operators defining the model which are consistent in a uniform sense,

i.e. in operator norm. With this strong property, plug-in estimates of the solution with

no further regularization can be shown to converge. There are, however, situations

where the condition which ensures that this is possible, referred to as “asymptotic

diagonality,” need not hold. These cases are intimately connected with the presence

of non-smooth or non-compact components of a model, which take input functions

which are smooth or well-behaved to output functions which are non-smooth or poorly

behaved. Qualitatively, such operators are associated with the phenomena of “scatter-

ing” or “turbulence,” in which high frequency fluctuations, instead of dissipating or at

least remaining isolated at high frequencies, influence behavior at lower frequencies,

so that large scale fluctuations cannot be controlled without looking to higher and
1See Horowitz (2013) for a survey of ill-posed problems in economics.
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higher scales.

3.2 Literature Review

The technical contributions of this chapter draw from a number of literatures. Lin-

earization in function space is an old technique for examining the properties of high

dimensional dynamical systems. In statistical mechanics, it is referred to as linear re-

sponse theory (Sethna, 2006, Ch. 10). The methodology has seen some application in

economics, most notably in the economic geography model of Krugman (1996) which

simplifies the problem substantially by using adaptive expectations. The extension

of this methodology to the case of rational expectations is described in Chapter 1,

where qualitatively similar antecedents are also reviewed. The mathematical theory

underlying this approach is based on separation into subspaces by a generalized Schur

decomposition and numerical approximation thereof, described in Appendix A. The

problem of estimating subspaces corresponding to an unknown infinite-dimensional

operator is well-studied in mathematics and increasingly so in statistics, with the

literature on high-dimensional or functional PCA and CCA. The study of the proper-

ties of subspaces corresponding to eigenfunctions or generalized eigenfunctions is the

field of mathematics known as perturbation theory. Most of the statistical literature

deals with highly structured operators, such as covariance operators, which exhibit

desirable properties such as symmetry and compactness, and so permit consistency to

be achieved by quantitative bounds on distance such as the Davis-Kahan theorem or

analogues. The procedure in Chapter 1 essentially follows this approach, by imposing

structure sufficient to apply a set of perturbation inequalities derived in Appendix

A.2 and building off of the finite-dimensional results of Stewart (1973), which take

advantage of the assumed compact structure. An older literature mainly applied in
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physics (see Kato (1976) for a textbook overview and Krieger (2001) for an economic

application) applies to a broader class of operators, but investigates parametric per-

turbations, which is useful when the solution is known up to a scalar parameter, but

not for arbitrary infinite-dimensional deviations. While this makes the results not

directly applicable to the case of infinite-dimensional function-valued perturbations,

the characterizations of subspaces used in this literature apply, and weaker results

may be derived directly from these characterizations.

The main inspiration for the approach in this chapter to analyzing perturbations in

the absence of the high degree of structure needed for previously applied perturbation

methods to work is the ‘Generalized Sampling’ approach developed by Adcock and

Hansen, et. al. in a series of papers mostly about compressed sensing of images

viewed as functions rather than a vector of pixels (Adcock et al. , 2014b), (Adcock

et al. , 2014a). The comparison is illustrative: they point to a number of issues which

may be generated by ignoring the propagation of bias induced by discretization into

pixels, and provide a series of methods for alleviating it.

The idea is as follows: imagine you have an image which you believe to be sparse in

a wavelet basis, such as the Haar basis, but instead of a subset of wavelet coefficients,

you observe a sample of Fourier coefficients instead (this is the norm in tomographic

imaging due to the projection-slice theorem) and wish to invert it. The Gram operator

which maps a function represented in wavelet coefficients to a function represented in

Fourier coefficients is an infinite-dimensional unitary operator, meaning it preserves

angles between vectors. By sampling only a subset of Fourier coefficients, we get a

subset of the rows, but because of sparsity in the wavelet basis, we are interested in

the columns. Since Haar wavelets and Fourier series are incoherent, it is not the case

that most of the energy in a given set of columns is concentrated in the subset of rows

sampled. As a result, if one tries to recover as many wavelet coefficients as Fourier

coefficients sampled, then even if the number of Fourier coefficients sampled grows, the
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matrix will become arbitrarily ill-conditioned, with minimal singular value decaying

to zero as the number of samples grows. As a result, as more samples are taken,

reconstruction error may (potentially) blow up to infinity. This is remarkable because

a unitary operator always has condition number one and so the true inverse which is

being approximated is very well conditioned. The error arises precisely because for a

non-compact operator, a finite dimensional subsample cannot consistently estimate

the singular values. The solution however, is quite simple: instead of sampling rows

and columns evenly, sample many more rows than columns. It is known for finite-

dimensional matrices that the minimal singular value of a subset of columns is at

least as large as that of the matrix as a whole (this is Cauchy’s interlacing theorem:

see e.g. Tao (2011, Ch 1.3)), and this applies also for infinite-dimensional operators

(with minimal singular value replaced by inverse of the norm of the inverse). If the

columns are well approximated, the minimal singular value can be kept well above

zero and the inverse is well-posed, and so one can eventually recover any finite set of

wavelet coefficients.

In my application, the unitary transformation of interest is the unitary opera-

tor which rotates the axes so that the components to be solved forward and the

components to be solved backwards are in known position. We wish to recover ele-

ments of the forward looking subspace from a sample of the basis functions we use to

approximate the functional derivatives, which are chosen mainly for computational

convenience since we rarely know the true eigenfunctions, nor can we easily compute

them to high accuracy in the absence of special structure. Without the structure

imposed by knowledge of the true Gram matrix in Adcock et al. (2014b), we will not

obtain rates of convergence with or without uneven sections, but we can guarantee

consistency for large enough number of rows sampled.
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3.3 Consistent Approximation of the Policy Func-

tions

3.3.1 Overview of Solutions to Rational Expectations Models

in Function Space

The class of problems to which this procedure is directed is a slight generalization

of the class of recursive functional rational expectations models described in Chapter

1. The object to be solved for is still the stable recursive solution of a nonlinear

expectational difference equation over a Hilbert space, in the sense of Definition 1

in Chapter 1, a set of maps g(x, �) : Hx ⇥ R ! Hy, h(x, �) : Hx ⇥ R ! Hx

which satisfy EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0 for a model

defined by given set of equilibrium conditions F , which induces a stationary law

of motion for x. The goal is still to construct the first order Taylor expansion

of these solution operators around a nonstochastic steady state (Chapter 1 Defi-

nition 2), which is assumed to exist. Given this framework, under �-regularity of

the operators (B, A), A =


Fx0 Fy0

�
, B = �


Fx Fy

�
composed of the func-

tional derivatives of the equilibrium conditions F at the steady state, the func-

tional derivatives of these operators take precisely the same form, defined in terms

of the generalized Schur decomposition of these operators, (B, A) = (Q⇤TU,Q⇤SU),

(T, S) =
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'X
: Hx ! Hx ⇥ {0} ✓ H

1

and 'Y
: Hy ! {0} ⇥Hy ✓ H

1

are imbeddings. Given

this representation, the first order approximate solutions satisfy Chapter 1 Formulas

3.3 and 3.6 as

U
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�1S�1

11
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11
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11
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12

gx)

The difficulty arises in the assumptions needed to ensure that these local solutions,

defined in terms of infinite-dimensional objects, can be consistently approximated by

computable, finite-dimensional methods. For a broad variety of models, there does

not exist an ‘asymptotically diagonal’ representation of the functional derivatives,

defined in terms only of compact operators and scalar multiples of the identity, and

so the procedures in Chapter 1, which require this assumption even to construct the

approximation are not applicable. We will instead offer an alternative procedure

which does not require this structure.

Moreover, because the procedure is not based on the operator norm perturbation

theorem used to demonstrate the validity of that method, the additional assumptions

required to ensure that the approximation yields a continuous perturbation of the

true operators in operator norm are not needed. As a result, Chapter 1 Condition 2,

which assures both existence of functional derivatives of the solution and the regularity

needed to use the method provided, can be weakened to just the conditions ensuring

existence, viz. �-regularity to ensure decomposability and invertibility of U
22

to ensure

that a solution exists which is stable. In practice, even invertibility of U
22

is slightly

stronger than needed, if all one wishes is to ensure existence of a solution, as opposed

to existence and uniqueness. In the presence of multiple solutions, as occurs in the case

of models with indeterminacy, the procedure provided will converge to one solution,

the ‘minimum norm solution’ so long as U
22

U⇤
22

has bounded inverse. The weakness of

the conditions imposed is what permits the applicability of the described procedure
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to ill-posed models: it is also what occasions the substantially more intricate analysis

required to ensure validity of approximations for a much broader class of objects.

3.3.2 Models with Non-compact Functional Derivatives

Relaxing the assumption that the functional derivatives of the model of interest consist

only of compact and identity operators allows consideration of models with substan-

tially different economic structure, and potentially, equilibrium economic behavior.

Non-compact operators can derive from a variety of different economic situations:

the commonality in all cases is simply that the output, when faced with an input

which is function-valued, cannot be summarized to arbitrarily high accuracy using

only a finite set of sufficient statistics chosen before the input is known. The identity

operator presents the clearest example: in order to exactly reproduce any input over

an infinite-dimensional space, it must allow a completely unrestricted class of possible

outputs. The same logic applies to other operators which are unitary, preserving the

norm of any possible input. This class includes any transformation that can be seen

as a change of basis, including rotations, permutations, and common transformations

such as the Fourier or wavelet transform. Operators of this sort can appear in any

case where evolution over time preserves certain quantities or symmetries of the sys-

tem, though admittedly this is less common in economic than physical applications.

One class of non-compact operator which is ubiquitous in economic applications is the

multiplication operator g(s) ! m(s) · g(s) for some non-constant m(s). This arises

most often as the functional derivative of a composition operator g(s) ! f(g(s))

with respect to g(.), for m(s) =

d
dx
|g(s) f(.). These arise, for example, in Euler equa-

tions for intertemporal optimization problems with respect to any state-dependent

variables. Relatedly, it may also occur that one wants to differentiate f(g(s)) with

respect to the function f(.), rather than g(.). In this case, the functional derivative

is given by the pointwise evaluation operator evalg(s)[f(.)] := f(g(s)). In general, this
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operator is not compact, and, depending on the Hilbert space in which f(.) lives, may

also fail to be bounded (see Berlinet & Thomas-Agnan (2004)). These can occur in

any case where the state variable is a function giving the response to another function,

as is ubiquitous in game theoretic settings or in dynamic settings.

One intuitive way to look at an evaluation operator is to see it as a degenerate form

of the broader class of kernel integral operators f(s)! ´ k(s, t)f(t)dt where the kernel

k(s, t) is, for every s given by the generalized function, or Schwarz distribution, �g(s),

rather than a function. While the case in which the kernel is not even a well-defined

function is extreme, non-compactness can occur in many cases where it is a function,

but is not smooth or bounded. Typical examples include singular integral operators,

in which k(t, s) asymptotes to infinity at some point in t, see Beylkin et al. (1991)

for discussion. These may arise in the case of a rapidly-decaying potential function,

for example, in spatial models where trade costs (or other costs of interactions) rise

rapidly with distance. More generally, integral operators arise in any case defined

by a conditional expectation, and may fail to be compact in many cases where the

conditional density in this expectation is non-smooth. This can occur in models where

some variables evolve deterministically or contain components which jump or flow in

a non-smooth manner, as frequently arises in models with fixed costs (Stokey, 2008).

It should be noted that the presence of these operators in an economic model need

not indicate that the behavior of the model is necessarily ill-posed. This requires

also that the non-compactness cannot be eliminated by some transformation which

leaves the behavior of the solution unchanged. The simplest way to perform such a

transformation is to multiply the row of the block operators (B, A) by the inverse

of the non-compact operator in question. This transforms the non-compact operator

into an identity. For a unitary transformation, this is simply given by inverting the

change of basis. Because the composition of any bounded operator with a compact

operator is also compact, so long as this inverse is bounded and the operator being
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inverted is the only non-compact operator in the row, this transforms a row containing

a non-compact operator into one without, without changing the solution. However,

if there is more than one non-compact operator in the row, this procedure fails. It

is precisely this class of equations in which ill-posedness is a fundamental issue. For

example, the equation f 0(s) =

´
k(s, t)f(t)dt for a singular kernel k(s, t), which could

represent the transition equation for a population of agents evolving according to a

law of motion inducing a non-smooth conditional density, has functional derivatives

(B, A) = (

´
k(s, t)[.]dt, I), both of which are non-compact.

Equilibrium relationships of this non-compact type typically reflect a fundamental

non-smoothness or high-dimensionality in the dynamics of the economy of interest.

The previous evolution equation example provides useful intuition. The set of be-

haviors inducing the singular conditional density may be relatively simple, but they

can induce dynamics at the aggregate level which are highly nontrivial. Extremely

fine features of the distribution at time t may have nontrivial impact on the distribu-

tion at t + 1 (and any aggregate variables which depend on it), making description

of the dynamics using low-dimensional statistics difficult or impossible. Some care

is warranted here; in the case where the space of shocks facing the economy is es-

sentially low-dimensional, in the sense of having a compact covariance operator, it

may be highly feasible to construct an estimator which is consistent with respect to,

for example, mean squared Hilbert norm error of forecasts, even if no estimator is

consistent uniformly over all possible inputs. However, when considering potential

policy options, which need not be aligned with the historical distribution of shocks,

the effect of these higher order components cannot be ignored.

One further way to avoid non-compactness is to assume a model in which the

non-smoothness does not appear. Such a model may in many ways be very simi-

lar to one in which it does, if the smoothing is induced, for example, by inducing a

small amount of smooth noise or heterogeneity into the deterministic or non-smooth
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transition, resulting in a transition equation which for any individual is, with high

probability, close to the deterministic value, but which induces a transition equa-

tion which is smooth, if rapidly changing at some points. For example, in the fixed

cost case, one may switch a deterministic fixed cost for a stochastic one, as used in

generalized SS models (Caballero & Engel, 1999), or otherwise introduce risk into

deterministic actions. While such changes are in some cases economically plausible,

they are not innocuous with respect to predictions for aggregate variables. For an

infinitely large class of potential inputs, the operators corresponding to the smoothed

and unsmoothed kernels differ by an amount bounded away from 0. To the extent

that components of this infinitely large set of variables interact with other variables,

the implied predictions for aggregate variables may differ substantially, no matter

how small the variance of the noise term added. As such, the choice to use a well-

posed rather than ill-posed model should not be made merely based on convenience,

but also based on understanding of the effects on both individual and aggregate level

dynamics.

3.3.3 Discussion of Methods

In order to calculate the first order derivatives of the policy function which solves

the rational expectations equilibrium, it is necessary to evaluate and compose certain

functions of the Fréchet derivatives of the equilibrium conditions, in particular their

generalized Schur decompositions and inverses thereof. Except in certain exceptional

cases, often requiring both partial equilibrium structure and specialized form for the

equilibrium conditions such as isotropy with respect to the Haar measure of a known

finite-dimensional group, finding a closed form for these functions is intractable and

often impossible. Numerical approximation suggests itself as an alternative approach,

but standard techniques encounter a number of pitfalls. In order for a technique based

on ‘plugging in’ approximations to the primitive objects of the model to yield consis-
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tent approximation of the model outcomes, two conditions are required: first, these

approximations must be consistent in some topology, and second, the model outcomes

must be continuous with respect to this same topology. This raises immediate prob-

lems for any approach based on finite-dimensional approximations of the equilibrium

operators when compactness does not hold, as the fact that these operators are not

compact implies that no finite dimensional approximation of any sort can consistently

approximate them in operator norm.2 As a result, to use finite-dimensional meth-

ods in this non-compact case, it is necessary to use a weaker sense of consistency

for the convergence of the primitives, such as convergence with respect to the strong

operator topology of pointwise convergence in Hilbert space instead of the operator

norm topology which requires uniformity over the Hilbert space domain. However,

when the primitives no longer converge in the stronger sense, it is no longer necessary

that the function of the primitives remains continuous. Indeed, I will show that with

respect to the strong operator topology, the policy function is no longer a continuous

function of the primitives without certain auxiliary conditions, and so a direct plug-in

approximation cannot be shown to be consistent, even in this considerably weaker

sense.

Instead, I propose a slightly modified procedure, which overcomes the discontinu-

ities in three ways.

The first is to impose sufficient conditions on the approximation such that the
2Those familiar with numerical analysis may object that there do exist frequently used numer-

ical methods which are able to handle certain classes of non-compact operators. Many classes of
differential equations characterized by non-compact differential operators are solved routinely by
discretization and finite-element methods. In general, however, such methods find weak solutions
characterized by functions of the operator of interest which are compact, such as an inverse or re-
solvent. In the models specified here, where neither the operators nor their inverses are compact,
these results are not directly applicable. More relevant, certain models may be characterized by
parametric perturbation theory, in which one works directly with infinite-dimensional objects which
are more tractable than the operators of interest and differ only by a finite dimensional parameter.
While such an approach may be useful in certain restricted classes of model with function-valued
state space, and indeed has been used for heterogeneous agent models (e.g. Krieger (2001)), defining
an appropriate parametric deviation must rely on the structure of the model, and may be impractical
for deviations which are infinite-dimensional in nature, such as arbitrary shocks to cross-sectional
distributions.
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components of the policy function which require taking an inverse, which is not con-

tinuous with respect to the strong operator topology, converge. This is guaranteed

by what Chatelin (2011, Ch. 3) refers to as stable convergence, sufficient conditions

for which include strong operator topology convergence and a uniform bound on min-

imum singular values. For sieve-type approximations, I show that such a bound is

guaranteed by an infinite-dimensional variant of Cauchy’s interlacing inequalities. Use

of this result is facilitated by the characterization of (generalized) Riesz projections

in terms of a complex path integral over a (generalized) resolvent operator, which

reduces the issue of convergence of spectral projections to application of dominated

convergence to the more easily characterized resolvent operator.

The second technique is to leverage pointwise convergence into uniform conver-

gence over finite sets of basis functions, which can yield uniform (operator norm)

convergence for finite-dimensional operators constructed from the outputs, allowing

characterization of the spectral properties of finite-dimensional intermediate represen-

tations and also ensuring that the policy function, which is compact under reasonable

conditions, converges in operator norm even though the primitives characterizing it

do not. The cost of the additional power afforded by this technique is the necessity

each time it is used to have substantially fewer elements in the approximation of the

subsequent step, resulting in both slower rates of convergence and the imposition of

the number of elements as an additional tuning parameter in the application of the

method. This represents a particular difficulty as the strong operator topology is not

metrizable and so no guidance may be provided on optimal rates for these tuning

parameters.3

3It is possible, under fairly mild conditions, to show convergence of the primitives in slightly
stronger senses which are metrizable, and indeed induce a Banach space, but are still substantially
weaker than operator norm convergence. It is not yet clear if these metrics may be passed through all
steps of the proof in order to yield rates of convergence in terms of the number of basis of functions for
each step. Investigation of this avenue, in order to provide guidance on tuning parameter selection,
remains a priority. The simplest examples of such a space are the weighted L

p spaces of p�(Bochner)
integrable measurable linear operators between fixed Hilbert spaces, when the measure on the space
is tight and so sufficiently concentrated on a small set, as are traditional stochastic process priors used
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Third, certain components of the approximation for which (procedures analogous

to psuedo-)inverses are required cannot be guaranteed to be nonsingular and so may

not converge even under a stronger norm. For these components, consistency can be

achieved by spectral cutoff-type regularization of the finite-dimensional approxima-

tions. Note that this is a separate issue from the first concern, as unlike in traditional

ill-posed inverse problems, cutoff or Tikhonov-type regularization will not, in general,

eliminate the continuity problem for inverses of operators converging in strong opera-

tor topology to non-compact operators. The reason for this is that even if the inverse

is bounded and so the problem is ‘well-posed’ according to the traditional Tikhonov

classification, if the operator and its inverse are not compact the singular functions

cannot be consistently estimated and so one cannot confine the bias induced by the

regularization to any particular eigenspace.

3.3.4 Step-by-Step Construction

The approximation of the equilibrium policy function proceeds in a sequence of steps,

each component constructed from the previous component. Beginning with an ap-

proximation of the Fréchet derivatives of the operators, one constructs the Riesz

projector, then the unitary operators inducing the Schur decomposition, then the tri-

angular form, and finally assembles the components into approximations of the policy

operators gx and hx.

We begin with some preliminary lemmas.

For purposes of numerical approximation, we would like to write hx and gx in forms

which are amenable to numerical approximation. In particular, in order to ensure sta-

bility of approximations of inverses, it is helpful to use constructions which ensure that

any inverse which is approximated is of a self-adjoint positive definite operator. For-

in Bayesian nonparametrics such as Gaussian processes and Bayesian sieves. Aside from requiring an
additional uniform integrability assumption, by putting almost all weight on compact and so “nearly”
finite dimensional spaces, these appear to produce behavior very similar to pointwise convergence.
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tunately, in the context of constructing the solution to a linear rational expectations

model, representations in this form are easily constructed. For gx, this is achievable

by using the analogue of the minimum norm solution gx = �U⇤
22

(U
22

U⇤
22

)

�1U
21

of the

linear equation U
21

+ U
22

gx = 0: this will permit the use of approximations of U
22

and U
21

for which the analog equation need not have a unique solution, even if the

true equation does. A related transformation can be shown to yield a representation

of hx for which the analog constructed with approximated components yields a stable

inverse.

Lemma 3.1. Let (U
22

U⇤
22

)

�1 be bounded and let gx = �U⇤
22

(U
22

U⇤
22

)

�1U
21

, the mini-

mum norm solution. Then

hx = (U
11

+U
12

gx)
�1S�1

11

T
11

(U
11

+U
12

gx) = ('X⇤'X
+g⇤xgx)

�1

(g⇤xU
⇤
12

+U⇤
11

)S�1

11

T
11

(U
11

+U
12

gx)

(3.1)

Proof. See Appendix C.

As a corollary, note that 'X⇤'X
+ g⇤xgx is a quadratic form satisfying

inf

kxkH
x

=1

k('X⇤'X
+ g⇤xgx)xk � inf

kxkH
x

=1

k'X⇤'Xxk = 1

and so this inverse always exists and is bounded. Therefore, if (U
22

U⇤
22

)

�1 is bounded,

a stable solution exists for hx.

The above representations of the objects to be approximated ensure the ability

to pass strong operator topology convergence through inverses, by ensuring uniform

upper bounds on the inverse of the approximating sequence, or, equivalently in the

finite-dimensional case, uniform lower bounds on the minimum singular value. For

approximations which are constructed by projecting the operator of interest onto a

lower dimensional space to form a submatrix, a useful tool is the Cauchy interlacing

inequalities (see, e.g. Tao (2011, Ch 1.3)), which provide bounds on the eigenvalues
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of a compression, or symmetric submatrix, of a Hermitian matrix in terms of the

eigenvalues of the original matrix, and in particular ensure that the minimum eigen-

value, considered on the lower-dimensional space, is no smaller than the minimum

eigenvalue of the original matrix. This then implies that for non-Hermitian matrices,

a submatrix consisting of a subset of the rows has smallest singular value no smaller

than that of the original matrix. Since the objects to be approximated are not in

general finite-dimensional or even compact, the standard version of the theorem does

not apply. However, in this situation, a bound on the norm of the inverse can be

recovered. The following result is likely classical, but lacking a reference and because

the proof is simple, is included for completeness.

Lemma 3.2. Let A 2 L(H ! H) be a bounded positive self-adjoint operator with

bounded inverse. Let P be an orthogonal projection from H to some finite-dimensional

subspace Im(P ). Then, considering PAP as an operator on Im(P ), �
min

(PAP ) �
1

kA�1k

Remark. The previous lemma may be extended to non-self-adjoint operators S by

considering the necessarily positive and self-adjoint operator SS⇤, as �
min

(PS) =

�
1
2
min

(PSS⇤P ) � 1

k(SS⇤)�1k 1
2
. Note that this provides bounds on one-sided projections

only: for projections of domain and range for non-self-adjoint operators, one obtains

only �
min

(PSP ) � 1

k(SPS⇤)�1k 1
2
, where the latter quantity may not be well controlled

even if k(SS⇤)�1k is.

To construct approximations of the generalized Schur decomposition of the Fréchet

derivatives of the equilibrium conditions, rather than simply finding an approximation

of the derivative operators and taking its generalized Schur decomposition, instead we

follow the construction in the existence proof for this decomposition by first approx-

imating the Riesz projector onto the stable generalized eigenspace and then passing

through it a set of vectors which are then orthonormalized to construct a unitary

operator representing synthesis with respect to an orthonormal basis of the span of
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the Riesz projection. In contrast to the full calculation of the generalized Schur

decomposition, this is different in two ways.

First, we do not presume that the vectors passed through the Riesz projector

are restricted to the eigenspaces associated to isolated eigenvalues of the true oper-

ator pencil, and as a result, within the stable subspace, the operator generated by

this approximations will not in general be upper triangular with isolated eigenval-

ues along the diagonal. As the construction of the equilibrium policy function only

requires a block upper-triangular decomposition with respect to the stable and un-

stable subspaces, this does not impede construction of the policy function. Second,

for the finite-dimensional approximation of the unitary operator, the number of vec-

tors used to construct an orthonormal basis need not and, in general should not,

equal the dimension of the space spanned by the approximated Riesz projector, as

the dimension of the approximation represents a tuning parameter controlling relative

approximation error rather than any fundamental aspect of the system itself.

Such an approach involves some loss of information relative to methods used for

finite-dimensional problems. By eliminating explicit calculation of eigenvectors and

eigenvalues it does preclude the ability to assess the existence and uniqueness of a

stable solution by counting stable versus unstable eigenvalues as first proposed by

Blanchard & Kahn (1980). Existence of a stable solution must instead be presumed

or verified at the outset. This should not be considered particularly surprising: while

the non-existence of a linear isomorphism between two spaces may be assessed in finite

dimensions simply by comparing the dimension of the spaces, when both are infinite-

dimensional more sophisticated assessments are needed. This is particularly the case

when the spaces are being represented by finite-dimensional approximations, for which

a mismatch in dimensionality may be a result of the approximation rather than of the

spaces themselves. Construction of approximations from subsets of the space must

therefore be undertaken with care, as the method may not provide the useful service
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of finite dimensional rational expectations algorithms of failing to produce output

when the assumptions for existence of a solution do not hold. As the Blanchard

& Kahn (1980) criterion is analogous to testing the order condition as a necessary

condition for a rank condition, and the conditions analogous to the rank condition

are supplied by the completeness of U
22

and its adjoint, this difficulty should be seen

in the light of the difficulty of testing for completeness: Canay et al. (2013) provide

impossibility results in a distinct but related setting.

To define the forward and backward looking subspaces properly, we make the

following assumption

Assumption 1: Let the pair of Fréchet derivatives of the equilibrium conditions

(B, A) be a pair of bounded operators between separable Hilbert spaces B 2
L(H

1

! H
2

) A 2 L(H
1

! H
2

) �-regular with respect to Cauchy curve � =

{exp(◆�) : � 2 [0, 2⇡)}.

The above condition specializes the assumptions of Lemma .9 for constructing a block-

wise Schur decomposition to the setting of the derivatives of the equilibrium conditions

and ensures that the blocks separate the stable and unstable subspaces. To see that

using the positively-oriented unit circle as the separating Cauchy curve satisfies the

assumptions of Lemma .9, note that the inner domain �

+

is the interior of the unit

circle, so 0 2 �

+

and outer domain �� is the exterior, so 1 2 ��. The ‘forward

looking’ or ‘exterior’ subspace is then given by the Schur subspace corresponding to

the exterior of �, while the ‘backward looking’ or ‘interior’ subspace is the subspace

corresponding to the interior of �.

Formally, the conditions for strong operator topology convergence of the approx-

imation of the Riesz projector onto the stable eigenspace are as follows.

Lemma 3.3. Let (B, A) satisfy Assumption 1. Let ⇡k1 be an orthonormal projection

onto a k
1

dimensional set of basis vectors spanning a subspace monotonically increas-

ing to H
2

and ⇡k2 be an orthonormal projection onto a k
2

dimensional set of basis
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vectors similarly increasing to H
1

, and define (

˜B, ˜A) = (⇡k1B⇡k2 , ⇡k1A⇡k2
). Define

the Riesz projector onto the stable subspace P
1

:=

1

2⇡◆

´
�

(⇣A � B)

�1Ad⇣ and its ap-

proximation ˜P k1,k2
1

:=

1

2⇡◆

´
�

((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))

�1

(⇣ ˜A⇤ � ˜B⇤
)

˜Ad⇣. Then, 8x 2 H
1

there exists a sequence k
1

(k
2

) increasing in k
2

such that 8✏ > 0, 9K
2

such that for all

k
2

� K
2

, k(P
1

� ˜P k1(k2),k2
1

)xk < ✏.

In order to construct the unitary operators U = [U
1

, U
2

] and Q = [Q
1

, Q
2

] which

induce a block upper triangular decomposition of the pair (B, A) using only the

pointwise convergence of the Riesz projector P
1

which maps onto the space spanned

by U
1

, the space spanned by U
1

and that spanned by U
2

will be treated asymmetrically.

The reason is that U
1

may be constructed from points in the span of P
1

directly, but

because the space on which U
2

resides is orthogonal to the entire space spanned by U
1

,

pointwise convergence of P
1

only gives access to constructions which are orthogonal

to a finite dimensional subspace. The issue may be resolved by first constructing a

projector onto the orthogonal complement of a (growing) finite dimensional subspace,

which will converge pointwise, and only then passing through this a smaller number

of points to construct an approximation of U
2

.

For both U
1

and U
2

(and the components of Q), which in the proof of existence

of the upper triangular decomposition are constructed by orthonormalizing bases of

their respective subspaces, construction proceeds by first taking the map of a fixed

set of points in H
1

onto the subspace and then using the outputs to construct a set

of orthonormal vectors within the space. While in principle Gram-Schmidt orthonor-

malization, or more numerically robust procedures such as QR decomposition which

also orthonormalize a given set of vectors could be used, these procedures are dis-

continuous and so not robust to approximation error in the presence of singularity

induced when the projection onto the subspace renders outputs collinear. Although

it might be possible to simply assume that the vectors used to construct U
1

and U
2

induce for any finite dimension a full-rank (quasi-)matrix (in the sense of Townsend
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& Trefethen (2014)), primitive conditions for this would require at least some knowl-

edge of the characteristics of the stable and unstable subspaces which is generally

not available, as otherwise there would be no need to use numerical approximation.

Instead, the issue may be handled by judicious regularization which eliminates elim-

inates components which appear to be close to singular. In particular, we use a

truncated singular value decomposition, which uses as the set of orthonormal vectors

in the stable subspace the left singular vectors of the projection onto that subspace of

a set of vectors in H
1

corresponding to singular values larger than a small threshold,

eliminating those corresponding to singular values numerically close to 0.4For Q
1

,

which is constructed from an orthonormal basis of the range space of A and B on

the stable subspace, a similar technique may employed by passing the orthonormal-

ized vectors approximating U
1

through A and orthonormalizing the outputs, though

in this case orthonormality of U
1

and the assumed nonsingularity of A on the stable

subspace ensure that no singularity problem arises and so the QR decomposition may

be used instead of SVD.

This construction, for any finite dimensional approximation, induces a slightly dif-

ferent version of the generalized Schur decomposition at each level of approximation,

analogous to different ways of sorting the eigenvalues within the stable and unsta-

ble blocks in the finite-dimensional QZ algorithm as used in Klein (2000). It may

also be compared to the difference between the real and the complex QZ algorithms,

as, similarly to the real QZ algorithm, this method preserves the block triangularity

structure, but not necessarily triangular structure within a block. As the set of singu-
4Another way to construct an orthonormal basis from a possibly singular set of vectors, while

also preserving a fixed ordering of the vectors, is the rank revealing QR decomposition, (Golub &
van Loan, 1996, Ch 5.4). While this decomposition in principle is also robust to singularity (Hong &
Pan, 1992), actual construction of a column pivoting which is guaranteed to achieve these guarantees
appears not to be achievable with any known polynomial time algorithm (Çivril, 2014). One disad-
vantage of the ordering generated by the singular value decomposition is that, while it generates a
monotonically increasing span, this span does not have a natural basis in terms of the generating
vectors which is invariant as the dimension grows. It is this feature which necessitates the baroque
construction in which Schur components are defined on sequences of distinct but isometrically iso-
morphic Hilbert spaces.
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lar vectors span a monotonically increasing sequence of subspaces as k
3

grows, with

only the partition of those subspaces changing, the approximate Schur operators in-

duce a triangular array of sequences converging to equivalent (formally, isometrically

isomorphic) Schur operators which each generate identical equilibrium solutions, this

does not impede convergence to a solution.

Formally, to approximate U
1

we take a fixed set of (column) basis vectors {zi}k3
i=1

in

H
1

and denote by Zk3 the (quasi-)matrix with zi in the ith column. We may then take

U
k3,"

k3
1

defined by [U
⇤k3,"

k3
1

U
⇤k3,"

k3
extra ]Dk3V k3

= svd(

˜P k1(k2),k2
1

Zk3
) as an approximation

of U
1

, where U
⇤k3,"

k3
1

is the set of left singular vectors of ˜P k1(k2),k2
1

Zk3 corresponding

to singular values greater than a threshold "k3 > 0, which should be set to a value

below the smallest non-zero singular value of ˜P k1(k2),k2
1

Zk3 , and U
⇤k3,"

k3
extra is the set of

left singular vectors corresponding to smaller singular values. Specifically, we may

say this generates convergence in the following sense.

Lemma 3.4. Let the conditions of 3.3 hold and let Zk3 be a sequence of nonsingular

quasimatrices mapping Rk3 ! H
1

constructed by selecting as columns the first k
3

elements of a fixed sequence {zi}1i=1

whose closed linear span converges to H
1

(i.e.

Zk3
=

Pk3

i=1

hei, .izi where ei is the standard basis of Rk3). Then, there exist increasing

sequences k
2

(k
3

) and k
1

(k
2

(k
3

)), decreasing sequence "k3 > 0 such that the sequence of

approximations U
k3,"

k3
1

defined by [U
⇤k3,"

k3
1

U
⇤k3,"

k3
extra ]Dk3V k3

= svd(

˜P k1(k2(k3)),k2(k3)

1

Zk3
),

satisfies, 8x 2 H
1

, for any ✏ > 0, that there exists K
3

such that 8k
3

> K
3

k(Uk3,"
k3

1

�
U (k3)

1

)xk < ✏, where 8k
3

, U (k3)

1

is an analysis operator generating a representation in

`
2

of a complete orthonormal basis of Im(P
1

).

Remark. The particular unitary operator U (k3)

1

which is approximated by each element

of the sequence is not constant, in the sense that it maps the same element of H
1

to a

different representation. This is, however, immaterial to solution of the equilibrium,

as the input to the policy operator is mapped to a space by U
1

and then mapped back

to H
1

by its inverse after a suitable transformation. As the range space of U (k3)

1

is
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isometrically isomorphic for all k
3

and the transformation on that range space changes

precisely so as to offset this difference (see below for elaboration), this lack of a single

limit does not present a challenge. The important property of the limit which is to

be shown in this lemma is the property that U (k3)⇤
1

U (k3)

1

is an orthogonal projection

onto Im(P
1

), and so separates the stable subspace from the unstable subspace.

Construction of an estimator of U
2

which is pointwise consistent proceeds in a

substantially identical fashion to construction of the estimator for U
1

. The main

difference is that the subspace onto which the test functions are projected is not

Im(P
1

) but its orthogonal complement. As a result, the estimator of P
1

may not be

used directly. Moreover, because ˜P k1(k2),k2
1

is only pointwise consistent, the projector

onto the orthogonal complement of the span of ˜P k1(k2),k2
1

,

I � ˜P k1(k2),k2
1

(

˜P k1(k2),k2⇤
1

˜P k1(k2),k2
1

)

+

˜P k1(k2),k2⇤
1

,

is also not consistent, even if the pseudo-inverse is regularized by cutting off numeri-

cally small singular values. The reason for this is simple: as P
1

is a projection onto

a subspace, it does not have bounded inverse on H
1

as a whole, and so no ‘minimal

singular value’ condition of the type used in 3.2 applies, and so its inverse and as a

result, its resolvent and so its singular vectors, are not guaranteed to converge, and so

regularization cannot be applied to distinguish zero and nonzero singular values. The

issue is resolved by instead passing to a sequence of finite dimensional subspaces on

which convergence can be guaranteed. In fact, this has been achieved by the previous

lemma, which guarantees convergence of an operator spanning a finite-dimensional

subspace of Im(P
1

), in the form of U
k3,"

k3
1

. Projection onto the orthogonal comple-

ment of this smaller subspace can then be calculated by I � U
k3,"

k3
⇤

1

U
k3,"

k3
1

, which is

pointwise consistent. From there, the proof is identical.

Lemma 3.5. Let the conditions of 3.3 hold and let Z 0k4 be a sequence of nonsingular
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quasimatrices mapping Rk4 ! H
1

constructed by selecting as columns the first k
4

elements of a fixed sequence {z0i}1i=1

whose closed linear span converges to H
1

(i.e.

Z 0k4
=

Pk4

i=1

hei, .iz0i where ei is the standard basis of Rk4). Then, there exist increasing

sequences k
3

(k
4

), k
2

(k
3

(k
4

)) and k
1

(k
2

(k
3

(k
4

))), decreasing sequence "k4 > 0 such that

the sequence of approximations U
k4,"

k4
2

defined by [U
⇤k4,"

k4
2

U
⇤k4,"

k4
extra ]Dk4V k4

= svd((I �
U

k3,"
k3
⇤

1

U
k3,"

k3
1

)Z 0k4
), satisfies, 8x 2 H

1

, for any ✏ > 0, that there exists K
4

such that

8k
4

> K
4

k(Uk4,"
k4

2

�U (k4)

2

)xk < ✏, where 8k
4

, U (k4)

2

is an analysis operator generating

a representation in `
2

of a complete orthonormal basis of H
1

\Im(P
1

).

Remark. Although there need not be any relation between {z0i}1i=1

and {zi}1i=1

, there

is nothing prohibiting using the same sequence, and doing so may improve the per-

formance of the approximation as the component of z0i lying inside Im(P
1

) may be

approximated more accurately if z0i was itself considered in the approximation of

Im(P
1

). For the same reason, a reasonable choice of Zk3 might include elements

lying inside the span of ⇡k2 . For example, if an ordered orthonormal basis such as

orthogonal or trigonometric polynomials or wavelets is used for approximation, ⇡k2

may project onto the first k
2

elements, Zk3 may include the first k
3

elements, and

Z 0k4 may include the first k
4

.

Construction of an estimate of the left Schur operator Q follows the same general

pattern, with a few differences. First, as only the components of the generalized Schur

decomposition corresponding to the stable subspace are needed for construction of

a stable equilibrium solution, only Q
1

, which acts on the stable subspace, needs to

be constructed, though one could produce an estimate of Q
2

in a similar way if

desired. Second, the space on which Q
1

is constructed is the image of the projector

referred to as ⇡
2

in the proof of existence of the Schur decomposition. Rather than

constructing an additional estimator of ⇡
2

, points in this subspace are constructed

using an estimate of an operator with equivalent range, AP
1

, using as inputs the

orthonormal vectors constructed to span Im(P
1

). This allows construction of a basis
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to proceed by the QR algorithm instead of the singular value decomposition.

Lemma 3.6. Let the conditions of 3.3 hold. Define an approximation Qk3
1

of Q
1

by

Qk3⇤
1

Rk3
= qr( ˜A ˜P k1(k2),k2

1

U
k3,"

k3
⇤

1

). Then, 8x 2 H
2

, there exist increasing sequences

k
2

(k
3

) and k
1

(k
2

(k
3

)) such that for all ✏ > 0, 9K
3

such that 8k
3

> K
3

, k(Qk3
1

�
Q(k3)

1

)xk < ✏ where 8k
3

, Q(k3)

1

is an analysis operator generating a representation in

`
2

of a complete orthonormal basis of Im(⇡
2

). Qk3⇤
1

also converges in strong operator

topology to Q(k3)⇤
1

.

Given uniformly bounded estimates of Q
1

, U
1

, A, and B, one may easily construct

pointwise consistent approximations of the Schur matrices corresponding to the (1, 1)

block of the block upper triangular decomposition of (B, A), denoted (T
11

, S
11

) =

(Q
1

BU⇤
1

, Q
1

AU⇤
1

) by plugging in the approximated analogues. However, aside from

consistency, the analogue estimators do not generate an approximation of the policy

function with desirable properties. First, because S
11

enters through an inverse in

S�1

11

T
11

, so it is also necessary to achieve stable convergence, which may be achieved

by 3.2 provided that the approximation of S
11

used approximates a subset of columns

and not just a submatrix. As with the Riesz projector, this is achieved by asymmetry

in the size of the row and column dimensions, here using a lower dimensional approxi-

mation of U
1

than of Q
1

. One minor complication in this procedure is that the spaces

on which the elements of the sequences U (k3)

1

and Q(k3)

1

live are not constant, which

is problematic as one needs a fixed vector to which to apply a pointwise convergent

operator. To stabilize the spaces, instead of a subset of an arbitrary Hilbert space

represented by `
2

, we construct representations of U (k3)

1

and Q(k3)

1

as projections in H
1

so that S
11

and T
11

may be viewed as operators on H
1

with a single fixed limit rather

than a sequence of limits on different but isomorphic Hilbert spaces. More interest-

ingly, under the stronger compactness conditions imposed for .10, T
11

and S�1

11

T
11

can

be shown to be compact, opening the possibility that stronger results than pointwise

convergence might be achieved. By applying pointwise convergence on an increasing
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set of singular vectors, I show that under this additional condition, one may indeed

construct an estimator which is consistent in the operator norm topology. This ability

to ‘leverage’ a weaker result into a stronger one is key to ensuring that the approx-

imation of the policy function constructed converges uniformly over inputs. As the

compactness condition may not hold in all cases, I define two estimators of hX : one

which achieves uniform convergence but requires the compactness condition, and an-

other which achieves only strong operator topology convergence, but does not require

the compactness condition to hold.

Lemma 3.7. (i) Let the conditions of 3.3 hold, and define

(T (k3)

11

, S(k5)

11

) = (Q(k3)

1

BU (k3)⇤
1

, Q(k3)

1

AU (k5)⇤
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Define T k3
11
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and Sk5
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k5,"
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is constructed as in

3.4 using the first k
5

elements of {zi}1i=1

. Then 8x 2 H
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T (k3)

11
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1
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(ii) Assume in addition to the previous conditions that ⌦

1

and ⌦

2

are compact

operators. Then T (k3)

11

and S(k5)�1

11

T (k3)

11

are compact operators. Define threshk6(T
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11
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the optimal rank k
6

approximation of T k3
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constructed by thresholding all but the largest

k
6

singular values. Precisely, for any operator M , threshk6(M) = Uk6Dk6V k6⇤ where
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Remark. U (k5)⇤
1

S(k5)�1

11

T (k3)

11

U (k3)

1

is invariant to the set of basis vectors used to con-

struct U (k3)

1

and U (k5)

1

, and so may be written as U⇤
1

S�1

11

T
11

U
1

. As S and T enter

into the policy operator only through this quantity, we thus have that the that the

sequence of limits of the unitary Schur operators chosen does not affect the calculated

equilibrium outcome.

Given these preliminary results, we are now ready to construct an approximation

of the (first derivative of the) equilibrium policy function. Recall that the minimum

norm equilibrium map from the predetermined variables X to the jump variables Y ,

if a stable equilibrium exists, is given by gX = �'Y ⇤U⇤
2

(U
2

'Y 'Y ⇤U⇤
2

)

�1U
2

'X and

the map from the predetermined variables to these variables next period is given by

hX = (U
1

('X
+ 'Y gX))

�1S�1

11

T
11

U
1

('X
+ 'Y gX) which is equal to

hX = ('X⇤'X
+ g⇤XgX)

�1

(g⇤X'
Y ⇤

+ 'X⇤
)U⇤

1

S�1

11

T
11

U
1

('X
+ 'Y gX)

by 3.1. Given these formulations of the equilibrium functions, we may construct

approximations by simply plugging in the estimates of the components that have

already been constructed. For an appropriate sequence of tuning parameters, this

produces an estimator of gX which is consistent in strong operator topology and two
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possible estimators of hX : one which is consistent in strong operator topology, using

the estimate and assumptions from Part (i) of 3.7, and one which is consistent in

operator norm, using the estimate and assumptions from Part (ii) of 3.7.

Theorem 3.1. Let the conditions of 3.3 hold, and also assume U
2

'Y 'Y ⇤U⇤
2

has

bounded inverse. Let
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are compact operators. Let
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3.3.5 Advice on Tuning Parameter Selection

While the above results provide guarantees that for some values of tuning param-

eters k
1

to k
5

, "k3 , "k4 , "k5 and possibly k
6

the policy operators produced by the

algorithm will accurately characterize the true equilibrium operators, the guarantee
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is qualitative rather than quantitative. Largely this is an unavoidable result of the

nature of the problem. In order to permit the endogenous state variables to vary in a

way which is restricted only by the economic characteristics of the decision problem

rather than ex ante restriction to a smaller space not justified by economic theory,

one must permit unrestricted dependence of equilibrium decisions on a topologically

‘large’ space of potential inputs. This fact, along with the requirements of spectral

theory that the separation of inputs into ‘forward’ and ‘backward’ looking subspaces

be mediated by norm-preserving (unitary) transformations, result in the necessity of

estimating operators which are not compact. Operators which are not compact may

not be consistently approximated in uniform norm. As a result, components which

depend on these operators must be constructed from procedures which approximate

different parts of the space at different rates, and so for particularly poor choices

of input may require arbitrarily large approximating subspaces. In consequence, no

quantitative guidance may be provided for choices of k
2

, k
3

, and k
4

which applies uni-

formly over all inputs. Nevertheless, one may hope that for some reasonable choices

of input, and for the other tuning parameters, that more can be said, and indeed this

is the case.

A common feature of the structure of economic models in this class which permits

somewhat more to be said about choice of approximation is that even when asymptotic

diagonality fails, there may exist a ‘privileged’ subset of H
1

on which one expects

most of the variation in endogenous objects to reside. This is easiest to see when the

conditions for operator norm consistent estimation of hX are met: the equilibrium

operator may be split into two compact components, ⌦

1

and ⌦

2

. By compactness,

for any desired level of approximation ✏, there exists a finite-dimensional subspace,

given by the span of the right singular vectors of ⌦

1

and ⌦

2

in decreasing order by

singular value, to which the restriction of these operators yields error no more than ✏

uniformly over inputs in H
1

. By choosing ⇡
2

so that the subspace it spans contains
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this subspace, and the span of ⇡
1

to contain the span of the corresponding right

singular vectors, the action of the equilibrium conditions may be well-approximated

within the forward and backward subspaces. In particular, the component of hX

given by action on the subspace of HX corresponding to eigenvectors inside the unit

circle is given by a compression of ⌦

1

onto the subspace spanned by this eigenspace5,

and so must also be well approximated by the first left and right singular vectors

of ⌦

1

. This suggests also choosing these singular vectors to generate Zk3 (and Zk5).

Similarly, the components of U
2

which generate those components of gX which map

onto the principal singular vectors of hX may likewise be chosen for Zk4 . The number

of such functions used to achieve a given degree of accuracy is determined by the

rate of decay of the singular values of ⌦

1

and hX , with faster decay indicating that a

smaller number of functions is needed to achieve a given level of uniform accuracy.

In practice, choosing singular vectors or eigenvectors of the equilibrium conditions

is infeasible, as they are unknown, which is the entire point of approximating them

numerically. However, the rates achievable with perfect knowledge of these compo-

nents represent a lower bound on the number of basis functions needed to achieve a

given level of accuracy. While the exact number needed is not knowable in general,

one may use qualitative properties of the equilibrium conditions to provide estimates.

In particular, the rate of decay of the singular values determines the approxima-

tion number of the compact components for which bounds exist (Carl & Stephani,

1990, Ch. 2). One may use Jackson-type inequalities to convert knowledge of the

properties of the range of a compact operator into estimates of singular values. In

general, these inequalities say that if an operator maps the unit ball in Hilbert space

to a set which is ‘small’, in the sense of having a small metric entropy or covering

number, then then the operator has correspondingly rapid decay of singular values.

The archetypal example is the case in which the output of an operator maps ar-
5i.e. U

⇤
1 S

�1
11 T11U1 = U

⇤
1 U1⌦1U

⇤
1 U1
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bitrary functions to smooth functions, in the sense of having derivatives which are

bounded or square integrable. Standard choices of basis functions, such as trigono-

metric or orthogonal polynomials, yield an approximation error which is uniformly

small over all smooth functions, and so an operator whose output is known to be

smooth must have range well-approximated by a finite-dimensional subspace, and in

particular must have singular values which decay at least as fast as the approxima-

tion error using standard basis functions. The dependence of the approximation error

on the degree of smoothness is well known for many choices of basis function. For

trigonometric polynomials, the error in approximating a function (in L2 on a bounded

domain) decays exponentially in number of basis functions used for functions which

are infinitely differentiable, and polynomially of order k for functions with discontin-

uous k � 1

st derivative: i.e., functions with a discontinuity have approximation error

which decays linearly, while continuous functions with a break in the first derivative

have error which decays quadratically. The same general rates apply to Chebyshev

polynomials: see Boyd (2000, Ch. 2) for precise results and a useful discussion of

heuristics and rules of thumb for choosing an appropriate number of basis functions

given only qualitative information about the function to be approximated. Note that

while information about the range of compact components does not imply that the

right singular vectors satisfy similar smoothness properties, the same techniques may

be applied to the adjoint operators to provide similar bounds. Take as an example a

canonical choice of compact operator, a Fredholm integral operator of the first kind

f(x) =

´
k(x, y)[f(y)]dy. Under reasonable conditions, if the kernel k(x, y) has square

integrable kth derivative with respect to x, it will map f(y) 2 L2 to f(x) with square

integrable kth derivative. Similarly, the adjoint operator f(y) =

´
k(x, y)[f(x)]dx

will have smooth range if the kernel k(x, y) has square integrable kth derivative with

respect to y.

While smoothness principles are useful for characterizing both the rate at which
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singular values may be expected to decay and providing a guess at which sets of basis

functions may be used to accurately approximate the compact components, one must

be aware that smoothness conditions do not imply that singular vectors or eigenvec-

tors may be approximated at standard rates for smooth functions. The reason for

this is simple: the full set of singular vectors must span the entire space on which

the operator acts, but the set of smooth functions is only a small subset of this larger

space. While the first few singular vectors of a smooth operator will themselves be

smooth, higher order singular vectors must be orthogonal to the preceding set of

smooth singular vectors, and so cannot themselves be smooth. As the size of the

singular value decreases, the degree of smoothness, and so approximability by a fixed

set of basis functions, of the corresponding singular vector decreases linearly. For

example, the eigenfunctions of a convolution operator are the trigonometric polyno-

mials, and so to approximate the nth singular vector to error of norm less than one,

one must use exactly n trigonometric polynomials, and no other set of basis functions

can do better. It is for this reason that no uniform approximation rates can be given

for the unitary components of the generalized Schur or eigendecomposition.

In the case where compactness on subspaces does not hold, similar principles apply.

While the domain of (B, A) consists of the entirety of H
1

and due to the presence of

non-compact components the restriction of (B, A) to any finite-dimensional subspace

will always be uniformly bounded away from the truth, it is often the case that ‘many’

or ‘most’ components of (B, A) are compact. As a result, these components may be

uniformly approximated on a finite-dimensional subspace, outside of which they are

approximately equal to zero. Outside of this space, even if (B, A) is not asymptotically

diagonal, it may take a relatively simple structure, approximately, given block-wise by

a mix of identity operators and multiplication by smooth functions, which preserve the

smoothness properties of the input. As a result, one may hope that after a sufficient

number of basis functions are used to well-approximate the compact component,
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the equilibrium operators map inputs of higher order basis functions to outputs do

not require substantially higher order basis functions to approximate, and so the

equilibrium policy operators are well approximated on the space of inputs of lower

order. Note that this requirement is far from trivial. For a smooth multiplication

operator, such as a low order polynomial, a polynomial input may be mapped to

an output which requires only a slightly higher order polynomial to approximate

well. Because this applies no matter how high the order of the input, no square

approximation of the operator is uniformly valid, but the degree of uneven-ness may be

bounded. In contrast, such a pattern could continue indefinitely if one component of

the equilibrium conditions is a unitary operator which rotates inputs well represented

in one basis into outputs represented in a completely unknown basis: this is the worst

case scenario for the algorithm described in terms of rates, as one could potentially

need an arbitrarily large number of additional basis functions to approximate the

output of one additional basis function provided as input. However, such a component

does not seem to be a natural element of most economic models.

Slightly more realistically, an economic model may have components with singular

functions which are mutually incoherent, so that a set of functions which well repre-

sents one operator must poorly represent the other. In this case, so long as at least one

of the components is compact, one may include an additional set of basis functions

which well-represent the finite-dimensional space on which the bulk of the energy of

the offending component resides, increasing the required number of functions for a

given approximation error but not increasing the required rate of growth for each

component. The typical example of this is when one component is well represented in

a Fourier basis (i.e., it is smooth), and the other is well-represented by spatially local-

ized functions (i.e., it is spiky). In this case one may use either the span of two sets of

basis functions, trigonometric polynomials and functions well-representing spikes, or

use a basis which may approximate both to reasonable accuracy. When this occurs,
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the number of basis functions needed for a given accuracy will be at least the worse of

the two rates required for accurate representation of each, with additional overhead

or an increased constant factor induced by the additional component.

For the tuning parameters used to ensure that inverses are stable through use of

uneven section methods, viz. k
1

relative to k
2

and k
3

relative to k
5

, aside from needing

to be at least as large as their counterpart, the Cauchy interlacing argument provided

does not provide quantitative guidance on reasonable ratios.6 As usual, this is be-

cause in large spaces, it is in principle possible for the choice of right approximating

subspace and left approximating subspace to be so mismatched relative to the opera-

tor that an arbitrarily large number of left bases is needed for any given right input to

ensure the minimum singular values is bounded away from 0. But we may again con-

sider ‘typical’ behavior by examining classes of operators believed to be qualitatively

similar to those which will appear in standard models. In particular, given choices

of basis functions which are sensible in they provide accurate approximations to the

ordered set of singular functions of the model with not too many additional func-

tions, the output generated by expanding the input space by one dimension should

be well-approximated with a small number of extra basis functions. This can be and

has been quantified for several important cases. For the unitary transform (equiva-

lent to an infinite-dimensional Gram matrix) between trigonometric polynomials and

Daubechies wavelets, both reasonable choices for representing smooth functions and

so likely to be typical of the discrepancy between the basis functions typically cho-

sen and the unknown singular functions of the operators involved in the equilibrium

conditions, Adcock et al. (2014b) show that a constant ratio of trigonometric poly-

nomials to wavelets is sufficient to preserve the size of the minimum singular value as

the number of wavelets used goes to infinity. Depending on the order of the wavelet

basis and exact degree of approximation, the required constant is small, around a
6
k3 must also be large relative to k4 for these purposes, but the dominant factor driving their

relationship is the necessity of the pointwise convergence of projections in 3.5.
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factor of 2 to 4. They note however that oversampling is necessary: for ratios below

a computed constant, the minimum singular value decays exponentially quickly as

the number of wavelets grows. This suggests that for components of the proposed

algorithm which rely on similar oversampling and for reasonable basis function choice,

while some constant factor of oversampling is needed, the degree of oversampling re-

quires need not grow with the number of basis functions, at least if similar results

hold: k
1

may be chosen as Ck
2

and k
3

as Ck
5

, for some C on the order of 2 to 4, or

slightly larger to be safe. For this ratio one also has a potential diagnostic: one can

simply look at the minimum singular value of the operators � ˜A- ˜B, Sk5
11

, and U
k4,"

k4
2

'Y

for different values of k
1

, k
3

, and k
3

, respectively. While a small value is not neces-

sarily indicative of a need for a higher degree of oversampling, as nothing requires

the true minimum singular values of these operators to be of a particular scale, a

relatively large value (on the order of 0.1 would certainly count as large) which does

not substantially change with k
1

or k
3

respectively will ensure stability of the inverse.

Another set of tuning parameters used are the values "k3 , "k4 , and "k5 , used to

ensure that the orthonormalization process does not blow up numerical noise into

fictitious singular vectors. In general, the procedure should not be strongly sensitive

to choice of these parameters. To induce a singularity, a vector in Zk3 , Zk4 , and Zk5

must not only be near the boundary of the subspace onto which it is being projected,

but the proportion of this vector lying in the subspace must be arbitrarily close to 0.

As such, it may often be the case that all vectors are far enough from this edge case

that a relatively wide range of choices for " will lead to exactly the same numerical

output. This is the case, for example, if Zk3 and Zk5 are chosen optimally, as vec-

tors completely inside the interior eigenspace, and will continue to be true for values

chosen anywhere approximately close to this choice, where the approximation need

not increase in accuracy with sample size. More generally, if " is chosen slightly on

the large side and so excludes a singular vector, this has the effect of reducing the
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dimension of the approximating subspace by 1. Unless the target of interest has sub-

stantial mass within the one-dimensional subspace spanned by this singular vector,

the pointwise approximation should remain nearly as accurate, equivalent to using

just one fewer basis function. An " which is slightly too small will in contrast end

up magnifying numerical noise and so including projection in a direction which is

close to random. A potential diagnostic is to examine the smallest singular values

of the projected matrices to see what changes in " end up excluding, and to check if

the singular vectors it excludes are stable as the dimension of the projector changes,

which one hopes would characterize true singular vectors, or vary substantially, which

is what would be expected for numerical error. While again this may not perfectly

distinguish, as true singular vectors associated to small singular values will also gen-

erally be quite variable at moderate degrees of accuracy, as suggested by Wedin’s Sin

⇥ theorem, this is arguably a positive contribution, as a poorly estimated contribu-

tion from a true singular vector may itself result in substantial approximation error

relative to the small reduction in bias of adding one more basis function.

In conclusion, basis functions should be chosen in accordance with the known

smoothness properties of the model, in numbers large enough to ensure numerical

stability of the outputs. One wants enough basis functions chosen to yield numerical

accuracy on typical inputs, which should have polynomial size representations if mod-

erately smooth or logarithmic size representations if supersmooth, and enough basis

functions must be chosen in each step to ensure stability of the previous step. Typ-

ically, one expects for a model with well-chosen basis functions each k
1

to be of the

same order of magnitude as k
2

and k
3

to be of the same order of magnitude as k
5

, but

a constant multiple larger. For k
2

relative to k
3

, k
3

relative to k
4

, and k
4

and k
5

rela-

tive to k
6

, convergence of projections pointwise should follow rates for nonparametric

projection estimation of smooth functions, with the improvement that the bases used

for projection are redundant across the different functions to be estimated, so that
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rather than compounding, the error is primarily driven by the approximation in the

hardest function to approximate, which, since eigenfunctions and similar bases are

generally decreasing in smoothness as order increases, is usually the last, in order.

Although not foolproof, these principles should allow selection of tuning parameters

of reasonable magnitudes: further refinement may then be achieved by numerical

experimentation and examination of singular values and singular vectors.

3.4 Application and Evaluation

3.4.1 Example Model: Target Tracking with Adjustment Costs

To fix ideas regarding the framework provided, we provide a simple function-valued

model to which the decomposition and approximation procedures may be applied.

This model of decision-making under adjustment costs provides an illustration of the

concepts involved in solving a high-dimensional rational expectations model, while

maintaining a high enough degree of tractability that an explicit (partially) closed

form solution is available. This may be used both to describe the structure of a

stationary rational expectations equilibrium in Hilbert space and to assess the prop-

erties of a numerical solution method. The concept is that each period, the agent

must choose a function so as to minimize the distance of this function from an inde-

pendent and identically distributed function valued target, subject to an adjustment

cost quadratic in the distance of the current choice from a shifted version of last

period’s decision. The agent’s problem is given as

max

{a
t

}1
t=0

E
1X

t=0

�t
(kat � ⌘tk2H + kB[at � at�1

]k2H)

where at 2 H an infinite-dimensional separable Hilbert space, B is a bounded

compact linear operator H! H parameterizing the adjustment cost, and ⌘t is anH-
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valued exogenous target satisfying ⌘t+1

= �zt+1

, where zt+1

is a noise term inde-

pendent and identically distributed over time with mean 0 and covariance operator

⌃[.] := E hzt, [.]i zt.

Although this problem is primarily designed as a purely formal exercise to inves-

tigate the properties of a solution method, discussion is in order about its potential

economic interpretation. In form, this problem is most similar to the Rotemberg

(1982) model of optimal pricing subject to quadratic adjustment costs. In such a

model, we may interpret the choice variable at as representing the prices charged by

a monopolist for a continuum of goods and ⌘t as the period-t static profit-maximizing

price profile given product-specific but correlated demand shocks zt. In this case, B

might represents a distance and weighting function indicating which goods or, poten-

tially, combinations of goods, have prices which are more costly to adjust. Assuming

B is self-adjoint and has a discrete spectral decomposition B[.] =

P1
i=1

�i h�i, [.]i�i,

we may interpret each eigenfunction �i as a bundle of goods, and the corresponding

eigenvalue as the cost of adjusting that particular bundle: a large �i means changing

the price of bundle �i is difficult, while a small �i means that changing the price of

the corresponding bundle is easy.

This model may admit other interpretations as well, depending on the space H
chosen and the adjustment cost operator B. For example, this may represent a

communications problem. Each period, a monetary policy maker observes a set of

economic signals, consisting of quantitative economic indicators and verbal descriptive

reports. To influence market sentiment in a desired direction, the policy maker chooses

an announcement, which may naturally be thought of as an element of the high-

dimensional vector space of documents composed of a set (not necessarily finite)

number of words, to be as close as possible to the optimal statement given market

information. However, statements which deviate strongly from past statements may

result in undesirable confusion, and so the policy maker must also take into account
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the costs of increasing ‘semantic’ distance from previous statements. In this case, at

is the policy-maker’s public statement and B represents a distance function on the

space of documents, possibly weighted by economic importance of the words. See, for

example, Coifman & Maggioni (2006) or Mohri et al. (2012) for examples of vector-

space representations of documents and distance functions characterizing semantic

similarity.

Other interpretations may include personal style or fashion. Each period, some

appearance or social behavior ⌘t may be considered fashionable, but an individual

faces costs, potentially both monetary and in terms of desire to maintain a coherent

personal identity, as in Akerlof & Kranton (2000), of changing their personal style.

Given a vector space representing components of personal identity, the operator B

parameterizes which are the most psychologically fundamental and which may be

adjusted freely without damaging one’s self-image.

The feature which makes this model require a nontrivial decomposition into stable

and unstable subspaces is the adjustment cost. The presence of the adjustment cost

induces backward looking behavior because past decisions influence the current state

and so current decisions, but also induces forward looking behavior, since an agent

must take into account the effect of their current decision on all future decisions. The

transversality condition induces selection of a stationary path. Economically, the

agent recognizes that backward looking selection of a component which corresponds

to an unstable eigenvalue may end up, due to adjustment costs, causing the agent to

select a value further and further from the expected optimal state (here normalized

to 0), as adjustment back would be too costly, and thus incurs a large expected loss

with chosen value far away from expected ⌘t for a considerable duration.7 Decision
7Technically, due to discounting, the transversality condition only requires that discounted utility

not explode, which may be satisfied for any decision path inside the complex circle around the origin
of radius 1

�

. While the stationary solution remains a solution to the optimization problem, the
solution algorithm may easily be set to integrate over the appropriate path in order to incorporate
these additional components.
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rules generating sample paths in violation of the transversality condition correspond

to suboptimal ‘bubbles’. In the communication example, committing to a decision

rule which violates this condition might correspond to making a statement which

it would be very costly to walk back, requiring increasingly strong statements each

period in order to clarify the previous statement, eventually resulting in need to say

arbitrarily absurd things (from the perspective of the static optimal choice) simply in

order to cover for previous missteps. In the identity example, this would correspond

to cultivating an increasingly extreme and unpopular idiosyncratic style to maintain

one’s personal self-concept. Note though that an agent who is not committed to a

suboptimal rule would revert to the optimal policy rule immediately if it perceived

such a spiral out of control to be occurring, as there is no time consistency problem

in this model. In the opposite direction, forward looking assignment of components

corresponding to stable paths incurs a loss in deviating from current period optimal

policy, for bounded future gain, and so the agent prefers to set these components

based on past decisions and current shocks. Precisely which components are more

costly to solve forward and which are more costly to solve back depends strongly on

the characteristics of the adjustment cost parameterization B.

Taking first order conditions, we have

hat � ⌘t, .i+ hB(at � at�1

), B.i = �E hB(at+1

� at), B.i

simplifying to the condition

(I + (1 + �)B⇤B)at � ⌘t �B⇤Bat�1

= �EB⇤Bat+1

To represent the model in the format described, add the equations ⌘t+1

= �zt+1

and the auxiliary variable ut+1

= at so that only time t and t + 1 terms are included.
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With this, the system may be represented as

2

66664

�B⇤B 0 0

0 I 0

0 0 I

3

77775

2

66664

Eat+1

ut+1

⌘t+1

3

77775
=

2

66664

I + (1 + �)B⇤B �B⇤B �I

I 0 0

0 0 0

3

77775

2

66664

at

ut

⌘t

3

77775
+�

2

66664

0

0

zt+1

3

77775

Note that this model is asymptotically diagonal, and so may be analyzed by the

procedures of Chapter 1. However, as it again has an exact solution, it does provide

a useful test case for the algorithm introduced here, which may be used even when

the problem is not ill-posed, if this characteristic is not known ex ante.

3.4.2 Construction of Exact Solution

Due to the quadratic form of the utility function, this problem results in a characteri-

zation of the solution which is linear without approximations. In this representation,

at is y, the jump variable, and ut, ⌘t are components of x, the predetermined variable.

To simplify notation, let L := B⇤B =

P1
i=1

�i h�i, .i�i, where {�i}1i=1

is assumed to

be a complete orthonormal eigenbasis of H and {�i}1i=1

are non-negative eigenvalues.

Using this spectral decomposition, it is possible to solve the generalized eigenvalue

problem analytically to construct a generalized Schur decomposition of the matrix

pair. By taking the (unbounded) inverse of the matrix of coefficients on time t + 1

variables, the problem may be converted into a standard eigenvalue problem for the

unbounded operator given by

C =

2

66664

1

�
L�1

+

1+�
�

I � 1

�
I � 1

�
L�1

I 0 0

0 0 0

3

77775

As all elements are functions of L, I and 0, the spectral subspaces may be defined

in terms of the eigendecomposition of L. First, note that this operator has a non-
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trivial null space on H ⇥H ⇥H, which, since the null space of I is {0} and so the

first component of each element must be 0, contains elements of the form [0

0, a0, b0]0

such that � 1

�
Ia � 1

�
L�1b = 0 or b = �La. As a result, the null space is given by

the closed span of the set {[00, a0, (�La)

0
]

0
: a 2 H}. This set is the spectral sub-

space corresponding to generalized (generalized) eigenvalue 0. Note that the closure

condition is important here: {La : a 2 H} is dense in H but there exist elements

of H outside of it. Those elements in the closure of this set correspond to points at

which an inverse of C may be defined but is not continuous, and so properly corre-

spond to 0 as an element of the continuous rather than point spectrum. Economically,

this may be interpreted as saying that the system treats identically a current state

x = {ut, ⌘t} = {0, 0} and a state x = {ut, ⌘t} = {a,�La} for any a 2 H: that is, there

exists, for any value of the shock, a value of the past decision which would “exactly

cancel it out,” leaving the decision problem the same, or, in the cases in the closure, a

sequence of past values which come arbitrarily close to canceling out the shock. Due

to the fact that this continuous component of the spectrum is restricted to the null

space, this construction does not induce any difficulty in distinguishing the interior

and exterior components of the spectrum, which remain discrete.

Next we may consider the non-zero elements of the spectrum. As the third row

maps all elements to 0, non-zero eigenvectors must have 0 as the final element. Fur-

ther, since L has an orthonormal eigenbasis, they must be combinations of eigen-

vectors of L. So, eigenfunctions of C are of the form 'i / [ai�0i,�
0
i, 0

0
]

0 for scalar

ai, where the proportionally reflects setting the coefficient on the second compo-

nent to 1, as eigenfunctions are identified only up to scale. Setting up the problem

�i'i = C'i, this reduces to the quadratic equation �i = ai = [(

1

��
i

+

1+�
�

)ai � 1

�
]

1

a
i

.

Setting zi = (

1

��
i

+

1+�
�

) and applying the quadratic formula, we find two roots, �±i =

1

2

(zi±
q

z2

i � 4

�
) corresponding to eigenvectors proportional to '+

i / [�+

i �
0
i,�

0
i, 0

0
]

0 and

'�i / [��i �
0
i,�

0
i, 0

0
]

0, respectively. Note that by compactness and self-adjointness, �i
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are real and non-negative and �i & 0 as i!1, �+

i %1 and ��i & 0 as i!1. By

the discreteness of the spectrum of L and the fact that 0 is its unique accumulation

point, at most a finite number of �+

i will be inside the unit circle and at most a finite

number of ��i will be outside. In fact we can say more. Economically interesting

parameters require that � 2 (0, 1), and since �i are real and non-negative, zi � 1+�
�

for all i. Plugging this restriction into �±i yields that �+

i > 1

�
> 1 for all i and ��i < 1

for all i, so the spectrum is well-separated and never intersects the unit circle. We see

then that the discrete spectrum of the operator pair contains an infinite number of

components inside the unit circle, corresponding to eigenvalues ��i and eigenvectors

'�i and an infinite number outside, corresponding to eigenvalues �+

i and eigenvec-

tors '+

i . By the completeness and orthogonality of {�i}1i=1

, it is apparent that the

union of the closed span of {'±i }1i=1

and the 0 spectral subspace defined above span

H⇥H⇥H and so provide a full characterization of the spectrum of C and so of the

generalized spectrum of the equilibrium operators. To decompose into forward and

backward subspaces, the forward subspace corresponds to all eigenvalues �+

i , while

the backward subspace corresponds to the 0 spectrum and all eigenvalues ��i . By

the orthogonality of {�i}1i=1

, {'+

i }1i=1

and {'�i }1i=1

are each orthogonal sequences:

however, they are not mutually orthogonal: if eigenvectors are normalized to have

norm one,
⌦
'+

i ,'�i
↵

= (�+

i �
�
i + 1)/(

p
1 + �+2

i

p
1 + ��2

i ). However, orthogonality

does imply
⌦
'+

i ,'�j
↵

= 0 for i 6= j. To construct the Schur vectors, it is sufficient

to orthogonalize the eigenfunctions corresponding to the interior and exterior sub-

spaces. We may also note that for any vector v in the 0-spectrum subspace, it may

be represented as v =

P1
i=1

c
ip

1+�2
i

[0

0,�0i,��i�0i]
0 for some sequence ci, and so we may

take the components of this sum vi =

1p
1+�2

i

[0

0,�0i,��i�0i]
0 to be a basis for the zero

spectral subspace, with the property that
⌦
'±i , vi

↵
=

1p
1+�2

i

p
1+�±2

i

and
⌦
'±i , vj

↵
= 0

for i 6= j.

As a result, we may construct the Schur matrices as follows. Take as the first
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set of rows of U
1

the eigenvectors '�i . Next, orthogonalize the 0 spectral subspace

to the previous space by projecting, for each i, the vector 1p
1+�2

i

[0

0,�0i,��i�0i]
0 onto

the orthogonal complement of the span of '�i . For each i, this generates the vec-

tor 1s

(

��

�
i

1+�

�2
i

)

2
+(

�

�2
i

1+�

�2
i

)

2
+�2

i

[

���
i

1+��2
i

�0i,
��2

i

1+��2
i

�0i,��i�0i]
0. We may then append the com-

plete set of these rows to the analysis operator generating coefficients with respect

to '�i to generate U
1

. To calculate U
2

, we take the eigenvectors '+

i and, for each

i, project them onto the orthogonal complement of the span of the interior eigen-

vector with the same index and 1p
1+�2

i

[0

0,�0i,��i�0i]
0. The analysis operator onto

this basis generates U
2

. The utility of this procedure is that to calculate any sin-

gle Schur vector, it requires access to at most a finite number of basis vectors (in

fact, no more than two). As such, while the Schur decomposition in theory re-

quires knowledge of the entire space to construct, and particularly so for U
2

, which

must be orthogonal to an infinite-dimensional space, the orthogonality properties

characterizing this particular operator ensure that the components can be sepa-

rated and so individual vectors can be constructed without accessing the full space.

Q
1

may be constructed, as before, by orthonormalizing the operator AU
1

, which

again has a closed form solution whose calculation requires access to only a fi-

nite set of eigenvectors. Columns are given by 1p
1+(���

i

�
i

)

2
[����i �i�0i,�

0
i, 0

0
]

0 cor-

responding to '�i and 1s

(

���

�
i

�

i

1+(��

�
i

�

i

)2
)

2
+(

(��

�
i

�

i

)2

1+(��

�
i

�

i

)2
)

2
+�2

i

[

����
i

�
i

1+(���
i

�
i

)

2�
0
i,

(���
i

�
i

)

2

1+(���
i

�
i

)

2�
0
i,��i�0i]

0

corresponding to the image of the null space, both for i = 1 . . .1. T
11

and S
11

may

then be calculated as Q⇤
1

BU
1

and Q⇤
1

AU
1

, respectively, and hX and gX can be con-

structed from the formulas gX = �(U
2

'Y
)

�1U
2

'X and hX = (I + g⇤XgX)

�1

(U
1

'X
+

U
1

'Y gX)

⇤S�1

11

T
11

(U
1

'X
+ U

1

'Y gX), where all elements are truncated to contain only

those components acting on {�i}n
i=1

.

By the orthogonality of these components with i  n and those with i > n, this

provides an exact characterization of hX and gX on inputs in the closed span of (the
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tensor product over H ⇥ H ⇥ H of) {�i}n
i=1

. While the complexity of the formulas

impedes precise discussion of the qualitative form of the optimal policy, it does permit

exact numerical calculations. One may note that the lack of interaction between

eigenfunctions indicates that the policy takes a form in which the decision regarding

a particular component is determined only by shocks to a particular component and

past values of that component. Numerical results in Section 2 demonstrate that the

policy functions have intuitive properties. As is apparent from the utility functions,

high values of ⌘ and u in a component result in a higher contemporaneous choice of

the corresponding component of a. Components corresponding to eigenfunctions of L

with larger eigenvalues are highly persistent, reflecting the higher costs of adjusting

them from past values, while components corresponding to low eigenvalues have little

persistence. In part, this reflects the i.i.d. assumption for the exogenous target, which

results in little amplification of the persistence induced by adjustment costs.

3.4.3 Solution Accuracy in the Adjustment Cost Model

The quadratic adjustment cost model described earlier provides a useful test case

for the approximation algorithm, as it requires a nontrivial generalized Schur de-

composition, but this decomposition has a known form. In particular, due to the

explicit construction of the generalized Schur vectors, which do not interact directly,

when restricted to inputs in the span of a finite subset of Schur vectors, the solution

may be calculated exactly from the finite-dimensional submatrices. One implication

of this fact is that, were A and B to be approximated by their finite-dimensional

projections onto this span, standard linear rational expectations solution algorithms

would produce exact answers for band-limited inputs, making this a case in which

new techniques are unnecessary. When the eigenfunctions of the equilibrium con-

dition operator are not known, approximation error once again becomes a concern,

though again due to the asymptotic diagonality, this approximation error could also
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be handled by the methods in Chapter 1. In order to provide at least some challenge,

rather than use the eigenfunctions as a basis, I evaluate the solution algorithm by

approximating the equilibrium conditions in a basis other than the eigenbasis before

applying the solution algorithm. One may see by inspection that for large i, due to

the presence of the identity components, the elements of T
11

do not converge to 0 and

as a result, hX is not a compact operator. As a result, to estimate hX , we apply only

the estimator hk4,k5
X , which does not require compactness, and not hk6

X , which does.

To assess the quality of the approximation, we provide a calibration expected to

be moderately challenging. We set �i =

15

i3
, a cubic decay rate being characteristic

of a kernel operator whose output has a second order singularity: that is, it outputs

functions which are differentiable, but whose second derivative has a discontinuity,

a situation which occurs frequently in economic models when decision makers ex-

pect a cost function which contains a kink at an unknown point, for example due to

phase-in of a policy or to an endogenous constraint, as is common in models with

collateral or limited liability. We set � = 0.96, within the usual range for discount-

ing in macroeconomic models: at this value, �+

i > 1

�
for all i, and ��i < 1, so the

transversality condition holds so long as only eigenvectors corresponding to eigenval-

ues inside any complex circle of radius in the range (max ��i , min �+

i ) are selected for

the backward-looking component. In practical terms, this means that the complex

unit circle is a consistent choice for the integration path when calculating the gen-

eralized Schur decomposition. Since the exact solution is available analytically, the

particular choice of functions for the eigenvectors of L matters only in relation to

the choice of basis functions used to approximate them. To that end, we consider a

pair of basis choices which are simple to work with and likely to represent the de-

gree of coherence between eigenfunctions and chosen representations likely to occur

in practice. Following Adcock et al. (2014b), we choose trigonometric polynomials

and Haar wavelets on the unit interval, which have the advantage that the change
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of basis may be calculated explicitly in terms of sinc functions. The trigonometric

polynomials fl(t) = e2⇡◆lt1[t 2 [0, 1]] for l = �1 . . .1 are the eigenfunctions of

convolution, integration, and differentiation operators and so are common in appli-

cations. When the basis functions chosen are Haar wavelets, given by the functions

�
0,0(t) = 1[t 2 [0, 1]],  j,k(t) = 2

j/21[2

jt � k 2 [0, 1

2

)] � 2

j/21[2

jt � k 2 [

1

2

, 1]], for

j = 0, . . . ,1, k = 0, . . . , 2j � 1, trigonometric polynomials are a moderately diffi-

cult set of functions to represent: since these wavelets are discontinuous functions

and have bounded and, for larger j, quite small, spatial support, not only do they

have unbounded support in the frequency domain, the rate at which approximation

error decreases as the number of trigonometric polynomials used to approximate one

wavelet grows is relatively slow. Still, in spite of the discontinuity, both bases rep-

resent smooth functions well, and if the eigenfunctions are ordered from low to high

frequency (we set �
1

= f
0

, �i = f� i

2
i even, �i = f i�1

2
i odd), a Haar wavelet repre-

sentation may achieve a high degree of accuracy with a moderate number of functions

relative even to smoother choices such as orthogonal polynomials. Further, a Haar

wavelet representation encodes exactly the same information as the popular histogram

representation.

To evaluate the estimator, we use the same wavelet basis and number of basis

functions on each of the three copies of H, ordered hierarchically by scale and then

shift, setting k
1

= 3 ⇥ 1024, k
2

= 3 ⇥ 512, k
3

= 3 ⇥ 256, k
4

= k
5

= 3 ⇥ 128, where

for Zk3 , Zk4 , and Zk5 , the first k
3

/3, k
4

/3, and k
5

/3 wavelet basis functions are used,

and as the exact wavelet coefficients of L are unavailable, these are calculated on its

truncation to the first 2048 eigenfunctions, incurring an operator norm error of up

to �
2049

⇡ 1.7 ⇥ 10

�9. Threshold parameters for truncating singularities are set at

"k3 = k
3

✏m , "k4 = 2k
3

✏m, and "k5 = 4k
3

✏m, for ✏m = 2

�52: these are set to essentially

exclude only singular values which are zero up to floating point error. Path integrals

are computed numerically by parameterizing the unit circle and applying adaptive
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Figure 3.4.1: IRF L2 approximation error: Adjustment cost model via Haar basis
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4 kat � ãtk ⇥ 10

4 kut � ũtk ⇥ 10

4 kat � ãtk ⇥ 10

4

0 3.662 5.182 3.464 4.128
1 4.611 0.753 4.436 1.370
2 0.753 0.236 1.369 0.569
3 0.236 0.091 0.569 0.299
4 0.091 0.045 0.299 0.178
5 0.045 0.027 0.178 0.105
6 0.027 0.016 0.105 0.060
7 0.016 0.009 0.060 0.033

quadrature. Upon calculation of gk4
X and hk4,k5

X , the estimates are tested by calculating

impulse response functions to some initial conditions representing different challenges.

For the first, we take as initial impact ⌘
0

= u
0

=

P
64

i=1

�i/k
P

64

i=1

�ik and for the

second, ⌘
0

= u
0

=

P
1024

i=1

1

i
�i/k

P
1024

i=1

1

i
�ik. The first is strongly band-limited, but

attaches high weight to middle frequencies resulting in a highly multimodal function.

The second attaches some weight to very high frequencies which may not be well-

approximated by the chosen basis, but the weight declines rapidly with frequency.

Impulse response functions for predetermined variables are calculated as (ũt, ⌘̃t) =

(hk4,k5
X )

t
(u

0

, ⌘
0

) and ãt = gk4
X (ũt, ⌘̃t), with (ũ

0

, ⌘̃
0

) simply denoting the projection ⇡k2

of the initial conditions onto the first k
2

elements of the wavelet basis. Figure 3.4.1

tabulates L2 error in ũt and ãt for each t = 0, . . . , 7. Subsequent figures display the

true and approximated IRFs. 8

Approximation error given the selected tuning parameters is modest, of order

10

�4 for inputs of norm 1. Notably, the error is approximately as large for ũ
0

as for

subsequent components in the IRF, in spite of the fact that the only source of bias in
8For the figures, only the real component of the approximated IRF is displayed. The presence

of an imaginary component (counted in the L

2 error), should not be considered a weak point of the
algorithm: due to the choice, for convenience of analysis, of complex trigonometric polynomials as
eigenfunctions of L, the true solution does in fact call for state variables that are functions with
range in C, for any initial state whose Fourier coefficients are not real, which is true for any function
not symmetric around 1

2 . While this feature is unlikely to be present in most economic applications,
it would not be present given strictly real operators, and does not cause any practical difficulties.
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Figure 3.4.2: True and estimated impulse responses to ⌘
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the estimate of the initial condition is that due to the basis function approximation.

This indicates that the approximation error due to the subsequent components of

the approximation including projection onto approximated eigenfunctions, need not

substantially magnify the discretization bias, at least for sufficiently large values of

tuning parameters. Repeated application of the approximated operator yields error

which is well controlled, in part reflecting that the true norm declines over time for

an IRF for a stationary solution and in part reflecting that hk4,k5
X yields errors which

are small enough to be controlled even after passed through multiple iterations.

The reasonably good performance of the estimators gk4
X and hk4,k5

X for this example

suggests that it is possible to accurately approximate the solutions to a dynamic

economic model with function-valued states using this method even when the solution

is a highly complicated function, which requires a large number of basis functions to

accurately represent and so would be difficult to parameterize in any parsimonious

fashion.
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Figure 3.4.3: True and estimated impulse responses to ⌘
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3.5 Conclusion

Many phenomena that economists want to describe are complex: they are the product

of a high degree of heterogeneity across individuals, changing over time in response

to and in anticipation of an uncertain environment which is high dimensional and

may itself be determined endogenously by the decisions of individuals. As data on

individual decisions and outcomes and over more complicated choices becomes avail-

able, models based on economic principles which directly examine the implications

of this diversity become particularly desirable. At the same time, the computational

challenges inherent in determining how these objects behave become increasingly

daunting. While it is often possible and desirable to find simplifications which ex-

ploit structural features of certain problems which compress the decision space, either

explicitly by ignoring all but a small set of features or implicitly by imposing symme-

tries or exclusion properties which restrict the possible combinations of interactions,

such simplifications should be made carefully, with awareness of the tradeoff imposed
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between tractability and bias. Ideally, such a tradeoff would be explicit and quantifi-

able. By constructing models which explicitly take into account the high-dimensional

nature of the economic environment and providing an approximation scheme which

provides consistent solutions over a set of economic states with, in theory, infinitely

many dimensions of uncertainty, this procedure provides a step in that direction.

For many classes of economic problem, linearization of dynamics in function space

provides a particularly tractable method for incorporating high dimensional uncer-

tainty. By working directly in an infinite-dimensional space, it provides a construction

which can be matched to arbitrary degree of accuracy to arbitrarily high dimensional

data. This is particularly important for understanding changes in distributions over

time, or in the case of counterfactual exercises, as a model which fits well to the

current shape of a distribution may not describe the ways in which it may change in

the future, especially under possibly complicated interventions which may themselves

take shapes which have not previously been observed. In the case that such inno-

vations are of interest, and are of moderate size (or the economic environment can

be shown to exhibit a high degree of linearity), functional linearization provides one

of the few procedures which can describe their dynamic impact. This is particularly

the case in situations in which individuals anticipate and make plans based on these

changes, in which case basing an estimate of the impact on a simple rule of thumb

or atheoretical description of decision-making may miss the results. Fortunately, the

functional linear model as a purely descriptive characterization of high-dimensional

dynamic environments can also be used to approximate, in a precise sense, the behav-

ior of forward looking agents in a fully-specified economic environment in response to

such changes.

This can be achieved by extending standard procedures for determining the local

behavior of dynamic, stochastic economic models with forward looking agents to the

case of function-valued state variables. As functional linearization reduces exactly
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to these standard procedures in the finite dimensional case, it becomes possible to

extend the extremely wide array of such models already existing to incorporate het-

erogeneity and function-valued choice sets. This is illustrated in Section 4.1, in which

a forward looking decision making problem with adjustment costs was extended to

take arbitrarily high dimensional choice set and interaction between components of

choices.

The main challenge in extension to infinite dimensional space is instead gener-

alizing the decomposition made endogenously by forward looking decision makers

between components which must be adjusted to achieve an outcome in the future

and components which are adjusted based on the persistent influences of the past.

Since many variables can interact, and in problems with function-valued states, an

infinite number of components (in the sense of a basis function representation) of

these functions may interact, determining how to make such a decomposition is a

challenging process. Technically, the process involved is separating the linear opera-

tors which generate an implicit description of the process into a triangular form on

orthogonal subspaces of the Hilbert space determined by the spectrum of the opera-

tors. I show under mild conditions that even when there is no way to reduce the space

of these interactions to a fixed, manageable dimension, such a decomposition can be

consistently approximated by increasing sequences of basis functions. As the unitary

operators defining the decomposition are permitted to be truly high dimensional, in

the sense that no finite representation can come close to describing their action uni-

formly over the space of inputs, and further they must be passed through a series of

transformations to generate a solution, naïve representations of their behavior cannot

be shown to accurately represent the behavior of the plans that are made. Intuitively,

the economic reasoning behind this is that in the presence of interactions between

components, restriction to a subset does not imply that approximation is accurate on

that subset.
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By applying the principles of generalized sampling (Adcock et al. , 2013) to con-

struct accurate representations of the action of the decomposition applied at a point

and applying to an increasing set of points which may then, with appropriate regular-

ization, be passed through the transformations necessary to construct the linearized

policy operators consistent with an equilibrium, one can construct finite-dimensional

representations which consistently approximate the response of the endogenous vari-

ables to any given state. In the case where the true solution may be approximated

uniformly well over all potential states (even though the decomposition used to gen-

erate cannot be), a simple variation of the procedure can ensure that the generated

approximation converges uniformly. Given a nonstochastic steady state solution,

which may be found by standard numerical methods, and a basis function represen-

tation of the derivatives of the equilibrium conditions, the algorithm to construct a

consistent approximation of the linearized equilibrium response of function valued

states may be implemented using standardized code over any model which fits the

framework described. The order of approximations used and the choice of regulariza-

tion parameters can be driven by simple diagnostics and rules of thumbs based on the

type of functions being approximated. Application to a nontrivial example, with the

high-dimensional adjustment cost model and the function-valued shocks fed into it

parameterized in such a way as to require a particularly high order of approximation

to accurately characterize solutions, shows that the algorithm can produce solutions

with reasonably high accuracy even when conditions on the structure are not known.

Given the expressive power of the functional linearization method and the general

applicability of the proposed equilibrium solution algorithm, they may be able to

provide insights for a wide variety of high-dimensional dynamic economic phenomena

heretofore difficult to analyze. These include models with nonlinear and non-smooth

relationships between states, high-dimensional non-smooth dynamic decision prob-

lems, and other models with high-dimensional interactions. In each of these cases,
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numerical characterization of the dynamics which takes into account the nontrivial

impact on system behavior of high-dimensional interactions will require careful con-

sideration of the propagation of errors and appropriate regularization to ensure that

this behavior is not misrepresented by inappropriately ignoring these function-valued

nature of the problem. Going forward, uses of these methods in realistic economic

models, as well as assessment of the extent to which the phenomena uncovered here

exhibit empirical relevance, are important future avenues to pursue.
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Appendix A: Results on the

Generalized Schur Decomposition

Existence of a Generalized Schur Decomposition for

Pairs of Bounded Operators

The construction of a solution for the linear expectational difference equation defined

by a linear or linearized rational expectations model in finite dimensions relies on

the ability to partition the state space and the equilibrium equations into ‘stable’ and

‘unstable’ components which may be treated separately. This is generally achieved by

either a Jordan decomposition, generating block-diagonal matrices, as in Blanchard

& Kahn (1980) or by a generalized Schur decomposition, generating upper-triangular

matrices,9 as in Klein (2000). In practice, the latter has become preferred, as the Jor-

dan decomposition of a matrix is not in general continuous while the generalized Schur

decomposition, which is generated by unitary matrices, exhibits numerical stability in

theory and practice. Such stability is particularly desirable in the infinite-dimensional

case, as closed form solutions for the eigenfunctions are not in general feasible and

finite-dimensional numerical procedures must by necessity induce some error into the

representation of the operator pair of interest.
9This decomposition is often referred to as the QZ decomposition, in reference to the QZ algorithm

often used to compute it. See Golub & van Loan (1996).
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While generalization of the Jordan decomposition to infinite-dimensional operator

pairs is well established (Kato, 1976; Gohberg et al. , 1990, Ch IV) and the Schur de-

composition for a single infinite-dimensional operator has also been defined (Gohberg

et al. , 1990, Ch II.3), an analogue of the generalized Schur decomposition for pairs

of infinite-dimensional linear operators has not, to the best of my knowledge, been

described. As in the case of the Schur decomposition of a single operator, extension

to the infinite-dimensional case is slightly delicate, as the existence of the Schur or

generalized Schur decomposition is based on an iterative construction which extends

only in certain cases to an uncountable state space. In particular, the Schur decompo-

sition may be extended to compact operators but not to arbitrary bounded or closed

operators, for which a Jordan decomposition exists but a Schur decomposition may

not. For the purposes of constructing an analogy of the generalized Schur decom-

position which permits extension of rational expectation solution procedures, there

are at least two ways around this difficulty. The first, and simplest, is to note that

while solution requires splitting the domain into ‘forward’ and ‘backward’ subspaces,

for a stationary solution there is no requirement that the restriction of the operator

to these subspaces itself take upper triangular form. Instead, one can construct a

block upper triangular decomposition which preserves the desirable feature of being

generated by unitary transformation while eschewing the necessity to make restric-

tive compactness assumptions. Alternately, one may construct a generalized Schur

decomposition analogously to the infinite-dimensional Schur decomposition, which

does preserve an upper-triangular structure within blocks, under a modified and so

slightly less onerous compactness condition than in the single operator case. In the

following, I show existence of a blockwise decomposition under general conditions,

and also decomposition which is upper triangular within blocks under a condition on

compactness of certain transformations of the operator pair which does not imply that

both operators are compact, and in particular allows the pertinent example of the
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standard eigenvalue problem in which one of the operators in the pair is the identity

operator, which is not compact on an infinite-dimensional space. This construction

also has the advantage that it implies compactness of certain Schur components and

so generates a solution for the law of motion which is itself compact.

Formally, let (M, G) be a pair of bounded linear operators acting between complex

Hilbert spaces HX and HY , i.e. M 2 L(HX ! HY ) G 2 L(HX ! HY ). Following

Gohberg et al. (1990), define the spectrum �(M, G) as those � 2 C such that �G�M

is not invertible, accompanied by the point1 if and only if G does not have bounded

inverse, and the resolvent set ⇢(M, G) as C1\�(M, G), where C1 is the extended

complex plane with the standard topology (see Conway (1978, Ch. 1 S. 6)).

Definition .1. An operator pair is said to be �-regular (with respect to a set �) if

for some nonempty subset � ⇢ C1, � ⇢ ⇢(M, G).

Assume � is a Cauchy contour (c.f. Gohberg et al. (1990, p.6)) with inner

domain �

+

and outer domain ��, and that (M, G) is �-regular. For concreteness,

we will often take � to be the positively oriented complex unit circle, in which case

�-regularity means that the spectrum does not contain � such that |�| = 1. From a

modeling perspective, this ensures stationarity by ruling out unit roots; this particular

choice is not required to ensure existence of a generalized Schur decomposition. By

Gohberg et al. (1990) Theorem IV.1.1, the above assumptions ensure the existence

of (possibly oblique) projection operators ⇡
1

: HX ! HX and ⇡
2

: HY ! HY which

partition HX and HY into Im ⇡
1

� Ker ⇡
1

and Im ⇡
2

� Ker ⇡
2

respectively, and the

operator pair (M, G) into components

(M, G) =

0

B@

2

64
M

1

0

0 M
2

3

75

2

64
G

1

0

0 G
2

3

75

1

CA : Im ⇡
1

�Ker ⇡
1

! Im ⇡
2

�Ker ⇡
2

(2)

such that (M
1

, G
1

) and (M
2

, G
2

) are �-regular, �(M
1

, G
1

) = �(M, G) \ �

+

and
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�(M
2

, G
2

) = �(M, G) \ ��. In words, this says one can separate the pair into

a component with spectrum inside some domain and a component with spectrum

outside.

Assume in addition that 0 2 �

+

and 1 2 ��. By the above result and the defi-

nition of the resolvent, this implies that G
1

and M
2

are invertible on their respective

domains. In particular, E =

0

B@
G�1

1

0

0 M�1

2

1

CA: Im ⇡
2

� Ker ⇡
2

! Im ⇡
1

� Ker ⇡
1

is

a bounded invertible operator and we may define the partition

(EM,EG) =

0

B@

2

64
⌦

1

0

0 I
2

3

75

2

64
I
1

0

0 ⌦

2

3

75

1

CA : Im ⇡
1

�Ker ⇡
1

! Im ⇡
1

�Ker ⇡
1

(3)

where ⌦

1

= G�1

1

M
1

and ⌦

2

= M�1

2

G
2

. These operators have the following rela-

tionship with (M
1

, G
1

) and (M
2

, G
2

):

Lemma .8. �(M
1

, G
1

) = �(⌦

1

), and 1

�
2 �(⌦

2

) if and only if � 2 �(M
2

, G
2

) (where
1

1 may be defined to equal 0)

Proof. Suppose � is in the resolvent set of ⌦

1

. Then ⌦

1

� �I
1

has some bounded

inverse Z. Then �ZG�1

1

satisfies �ZG�1

1

(�G
1

� M
1

) = Z(⌦

1

� �I
1

) = I
1

and

�(�G
1

�M
1

)ZG�1

1

= �G
1

G�1

1

(�G
1

�M
1

)ZG�1

1

= G
1

(⌦� �I
1

)ZG�1

1

= G
1

G�1

1

= I
1

,

so � 2 ⇢(M
1

, G
1

). That is, ⇢(⌦
1

) ⇢ ⇢(M
1

, G
1

). Next, suppose � 2 ⇢(M
1

, G
1

). Then

�G
1

�M
1

has a bounded inverse Z, and �ZG
1

satisfies �ZG
1

(⌦� �I
1

) = Z(�G
1

�
M

1

) = I
1

and �(⌦ � �I
1

)ZG
1

= �G�1

1

G
1

(⌦ � �I
1

)ZG
1

= G�1

1

(�G
1

�M
1

)ZG
1

=

G�1

1

G
1

= I
1

, and so ⇢(M
1

, G
1

) ⇢ ⇢(⌦
1

). Combining, ⇢(M
1

, G
1

) = ⇢(⌦
1

) and so

�(M
1

, G
1

) = �(⌦

1

). Similar calculations show 1

�
2 �(⌦

2

) if and only if � 2 �(M
2

, G
2

).

If 1 2 �(M
2

, G
2

), G
2

is not invertible and so M�1

2

G
2

� 1

1I
2

= M�1

2

G
2

must also

have nontrivial kernel, and so be noninvertible.

With this notation, it is possible to characterize conditions under which the oper-
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ator pair (M, G) has a generalized Schur decomposition. As our construction makes

use of complete orthonormal bases, we assume now that (M, G) are operators between

separable Hilbert spaces HX and HY .

Lemma .9. Let (M, G) be a pair of bounded operators M 2 L(HX ! HY ) G 2
L(HX ! HY ) �-regular with respect to a Cauchy curve with inner domain �

+

such

that 0 2 �

+

and outer domain �� such that 1 2 ��. Define projectors ⇡
1

and

⇡
2

as in 2 with respect to �. Then, there exist unitary operators Q = [Q1, Q2

] :

Im⇡
2

�HY /Im⇡
2

! F
1

� F
2

and P = [P 1, P 2

] : Im⇡
1

�HX/Im⇡
1

! E
1

� E
2

such

that (M, G) has the following block-wise generalized Schur decomposition

(QMU⇤, QGU⇤
) =

0

B@

2

64
M

11

M
12

0 M
22

3

75 ,

2

64
G

11

G
12

0 G
22

3

75

1

CA

from E
1

� E
2

! F
1

� F
2

where E
1

, E
2

, F
1

, and F
2

are spaces such that there exist linear isometric iso-

morphisms from Im⇡
1

! E
1

, HX/Im⇡
1

! E
2

, Im⇡
2

! F
1

, and HX/Im⇡
2

! F
2

,

respectively. Further, �(M
11

, G
11

) = �(M
1

, G
1

) = �(M, G) \�

+

and �(M
22

, G
22

) =

�(M
2

, G
2

) = �(M, G) \��.

Remark. The precise identity of the spaces E
1

, E
2

, F
1

, and F
2

need not be considered

for this result. However, a canonical choice of spaces would be to allow E
1

= Im⇡
1

,

E
2

= HX/Im⇡
1

, F
1

= Im⇡
2

, F
2

= HY /Im⇡
2

, in which case the Schur decomposition

acts on the same space as (M, G).

Proof. We generate Q and U constructively, then verify their properties. Choose

a complete orthonormal basis on Im⇡
1

, denoted {u
1i}1i=1

and then a complete or-

thonormal basis on the orthogonal complement of Im⇡
1

in H
1

, denoted {u
2i}1i=1

. The
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eigenvectors are not, in general, such a basis, because ⌦

1

and ⌦

2

are not assumed

self-adjoint and so nothing requires their eigenvectors to be orthogonal vectors. Then,

U
1

is the operator
P1

i=1

hu
1i, .i e1

i where {e1

i }1i=1

are an arbitrary orthonormal basis on

E
1

, a space isometrically isomorphic to Im⇡
1

, U
2

is the operator
P1

i=1

hu
2i, .i e2

i where

{e2

i }1i=1

are an arbitrary orthonormal basis on E
2

, a space isometrically isomorphic

to H
1

/Im⇡
1

. Likewise, choose a complete orthonormal basis {q
1i}1i=1

for the image

of (M
1

, G
1

) and a complete orthonormal basis for the orthogonal complement of this

space in HY , {q
2i}1i=1

. We define Q
1

=

P1
i=1

hq
1i, .i f 1

i and Q
2

=

P1
i=1

hq
2i, .i f 2

i , for

{f 1

i }1i=1

and {f 2

i }1i=1

orthonormal bases of F
1

and F
2

, spaces isometrically isomorphic

to the domains of Q
1

and Q
2

respectively.

Next, we show that these induce an upper triangular decomposition. We define

0

B@

2

64
M

11

M
12

M
21

M
22

3

75 ,

2

64
G

11

G
12

G
21

G
22

3

75

1

CA =

0

B@

2

64
Q

1

Q
2

3

75M


U⇤

1

U⇤
2

�
,

2

64
Q

1

Q
2

3

75G


U⇤

1

U⇤
2

�
1

CA

Using 2, we have that (BU⇤
1

, AU⇤
1

) = (B
1

U⇤
1

, A
1

U⇤
1

) since the range of U⇤
1

is Im⇡
1

,

and the restriction of (M, G) to this space is (M
1

, G
1

). Then, since the domain of

Q
2

is orthogonal to Im(M
1

, G
1

), we have (M
21

, G
21

) = (0, 0), so this is a triangular

decomposition.

To characterize the spectrum of the decomposition, first note that �(M
1

, G
1

) =

�(M, G) \ �

+

and �(M
2

, G
2

) = �(M, G) \ �� by Gohberg et al. (1990) Theorem

IV.1.1. (M
11

, G
11

) may be written as (Q
1

MU⇤
1

, Q
1

GU⇤
1

) = (Q
1

M
1

U⇤
1

, Q
1

G
1

U⇤
1

). Con-

sider � 2 ⇢(M
1

, G
1

). Then �M
11

�G
11

= �Q
1

M
1

U⇤
1

�Q
1

G
1

U⇤
1

= Q
1

(�M
1

�G
1

)U⇤
1

,

which has inverse U
1

(�M
1

�G
1

)

�1Q⇤
1

which is bounded since (�M
1

�G
1

)

�1 is bounded,

by definition of the resolvent set, and U
1

and Q⇤
1

are since they are unitary by con-

struction. So �(M
11

, G
11

) ⇢ �(M
1

, G
1

) = �(M, G) \�

+

.

Characterization of the spectrum of (M
22

, G
22

) requires a bit more care. (M
22

, G
22

)
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may be written as

(Q
2

MU⇤
2

, Q
2

GU⇤
2

) = (Q
2

M(⇡
1

+ (I � ⇡
1

))U⇤
2

, Q
2

G(⇡
1

+ (I � ⇡
1

))U⇤
2

)

= (Q
2

M
1

⇡
1

U⇤
2

, Q
2

G
1

⇡
1

U⇤
2

) + (Q
2

M
2

(I � ⇡
1

)U⇤
2

, Q
2

G
2

(I � ⇡
1

)U⇤
2

)

= (Q
2

M
2

(I � ⇡
1

)U⇤
2

, Q
2

G
2

(I � ⇡
1

)U⇤
2

)

where the second line follows from 2 and the final line follows from the fact that

the domain of Q
2

is orthogonal to the range of (M
1

, G
1

). Consider � 2 ⇢(M
2

, G
2

). By

definition of the resolvent, T (�) := (�M
2

�G
2

)

�1 is a bounded operator for all such

�. Then �M
22

�G
22

= Q
2

(�M
2

�G
2

)(I�⇡
1

)U⇤
2

. I claim that U
2

T (�)Q⇤
2

is a bounded

inverse of �M
22

�G
22

. To see this, note that Q⇤
2

Q
2

is equal to IH
Y

/Im⇡2 and U⇤
2

U
2

=

IH
X

/Im⇡1 . As a result, we have U
2

T (�)Q⇤
2

Q
2

(�M
2

�G
2

)(I � ⇡
1

)U⇤
2

= U
2

(I � ⇡
1

)U⇤
2

=

U
2

U⇤
2

= IH
X

/Im⇡1 , where we use the fact that U
2

⇡
1

= 0 since U
2

has domain orthogonal

to the image of ⇡
1

. By the identity (M
2

, G
2

)(I � ⇡
1

) = (I � ⇡
2

)(M
2

, G
2

), Q
2

(�M
2

�
G

2

)(I � ⇡
1

)U⇤
2

U
2

T (�)Q⇤
2

= Q
2

(I � ⇡
2

)(�M
2

� G
2

)U⇤
2

U
2

T (�)Q⇤
2

= Q
2

(I � ⇡
2

)Q⇤
2

=

IH
Y

/Im⇡2 , since Q
2

⇡
2

= 0. As a result, �(M
22

, G
22

) ⇢ �(M
2

, G
2

) = �(M, G) \��.

To show the reverse inclusion, note that �(M, G) = �(QMU⇤, QGU⇤
) by unitarity

of Q and U . Next, we show that �(QMU⇤, QGU⇤
) = �(M

11

, G
11

) [ �(M
22

, G
22

).

Since �

+

and �� are disjoint, �(M
11

, G
11

) ⇢ �(M, G) \ �

+

, and �(M
22

, G
22

) ⇢
�(M, G) \ ��, this implies that �(M

11

, G
11

) = �(M, G) \ �

+

and �(M
22

, G
22

) =

�(M, G) \ ��, as claimed. To show this, consider � 2 ⇢(M
11

, G
11

) \ ⇢(M
22

, G
22

).

Then �QMU⇤ � QGU⇤
=

2

64
�M

11

�G
11

�M
12

�G
12

0 �M
22

�G
22

3

75 has bounded inverse given

by 2

64
(�M

11

�G
11

)

�1 �(�M
11

�G
11

)

�1

(�M
12

�G
12

)(�M
22

�G
22

)

�1

0 (�M
22

�G
22

)

�1

3

75

and so �(QMU⇤, QGU⇤
) ⇢ �(M

11

, G
11

)[�(M
22

, G
22

). Next, suppose � 2 �(M
11

, G
11

)
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and assume for contradiction that � 2 ⇢(QMU⇤, QGU⇤
), and so �QMU⇤�QGU⇤ has

some bounded inverse

2

64
a b

c d

3

75. Then

2

64
a b

c d

3

75

2

64
�M

11

�G
11

�M
12

�G
12

0 �M
22

�G
22

3

75 =

2

64
I 0

0 I

3

75 and so a(�M
11

� G
11

) = I, implying that �M
11

� G
11

has bounded in-

verse a, a contradiction. Similarly, if � 2 �(M
22

, G
22

), then if �QMU⇤ �QGU⇤ had

some bounded inverse

2

64
a b

c d

3

75 then

2

64
�M

11

�G
11

�M
12

�G
12

0 �M
22

�G
22

3

75

2

64
a b

c d

3

75 would

equal

2

64
I 0

0 I

3

75, implying (�M
22

� G
22

)d = I, which is assumed false. As a result,

�(QMU⇤, QGU⇤
) � �(M

11

, G
11

) [ �(M
22

, G
22

), and the claim is shown.

Slightly stronger assumptions than used in the above can yield stronger results.

In particular, the assumption of compactness of ⌦

1

and ⌦

2

may permit the block

triangular decomposition to be extended to a triangular decomposition within each

block, as in the infinite-dimensional Schur decomposition in Gohberg et al. (1990).

This provides a link to the finite-dimensional method, but is nowhere necessary for

the application of the decomposition considered. However, compactness of the com-

ponents does provide a useful sufficient condition for the necessary conditions, and

also ensures the compactness of the solution operators, which is a condition com-

monly imposed for the validity of estimators of infinite-dimensional operators: see,

e.g., Bosq (2000).

If this refinement is not needed, we may instead operate under a strictly weaker

assumption: viz. that the spectrum of (M, G) is bounded away from �. To see that

this is weaker, note that compactness implies that the unique accumulation point of

the spectrum is at 0, and so by .8, the spectra of ⌦

1

and ⌦

2

and, as a result, of

(M, G) must neither be inside of � or have limit point in �. Formally, we define a

block triangular decomposition as follows. For notational convenience and analogy
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to the finite-dimensional case, we take the decomposition to be defined as a pair on

L(HX ! HY ) rather than over isometrically isomorphic spaces.

Lemma .10. Let (M, G) be a pair of bounded operators M 2 L(HX ! HY ) G 2
L(HX ! HY ) �-regular with respect to a Cauchy curve with inner domain �

+

such

that 0 2 �

+

and outer domain �� such that 1 2 ��. Define projectors ⇡
1

and ⇡
2

as in 2 with respect to � and ⌦

1

and ⌦

2

as in 3. Suppose in addition that ⌦

1

and ⌦

2

are compact operators. Then, there exist unitary operators Q = [Q1, Q1?, Q2, Q2?
] :

F
1

� F?
1

� F
2

� F?
2

! F
1

� F?
1

� F
2

� F?
2

and P = [P 1, P 1?, P 2, P 2?
] : E

1

�E?
1

�
E

2

�E?
2

! E
1

�E?
1

�E
2

�E?
2

such that (M, G) has the following (generalized Schur)

decomposition

(M, G) =

0

BBBBBBB@

2

66666664

M
11

M off
11

M
12

.

0 M?
11

. .

0 0 M
22

M off
22

0 0 0 M?
22

3

77777775

,

2

66666664

G
11

Goff
11

G
12

.

0 G?
11

. .

0 0 G
22

Goff
22

0 0 0 G?
22

3

77777775

1

CCCCCCCA

from E
1

� E?
1

� E
2

� E?
2

! F
1

� F?
1

� F
2

� F?
2

where E
1

, E?
1

, E
2

, E?
2

and F
1

, F?
1

, F
2

, F?
2

are closed linear subspaces of HX and HY ,

respectively. Further, with respect to the orthonormal bases {p̃1

i }1i=1

of E
1

and {q̃1

i }1i=1

of F
1

generating the rows of P 1 and Q1, respectively, (M
11

, G
11

) are upper triangular

with (M
11

)jj/(G11

)jj = �j where �j is the jth nonzero generalized eigenvalue (in some

arbitrary fixed order) repeated a number of times equal to its multiplicity in �(M
1

, G
1

),

and similarly with respect to the orthonormal bases {p̃2

i }1i=1

of E
2

and {q̃2

i }1i=1

of

F
2

generating the rows of P 2 and Q2, respectively, (M
22

, G
22

) are upper triangular

with (M
22

)jj/(G22

)jj = �j where �j is the jth finite generalized eigenvalue repeated a

number of times equal to its multiplicity in �(M
2

, G
2

). In addition, �(M?
11

, G?
11

) ⇢ {0}
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and �(M?
22

, G?
22

) ⇢ {1}.

Remark. (G?
11

)

�1M?
11

and (M?
22

)

�1G?
22

are examples of Volterra operators, as they are

compact and quasinilpotent (with spectrum equal to zero only). As a result, they may

be shown to be unitarily equivalent to a particular continuous analogue of an upper-

triangular operator with respect to a (not necessarily countable) increasing chain of

projections on subspaces of HX (Gohberg et al. , 1993, Thm. XXI.1.5). In principle,

a fully triangular representation of (M, G) in which (M?
11

, G?
11

) and (M?
22

, G?
22

) are

also upper-triangular with respect to some chain of subspaces could be generated via

an analogue for operator pairs of Gohberg et al. (1993, Thm. XXI.1.2). Such a

decomposition is unnecessary for our purposes, as block-triangular structure is suffi-

cient for representing a solution of the equilibrium conditions and the approximation

techniques to be used do not take advantage of the continuous structure provided by

the more intricate decomposition.

Proof. Begin by noting that if P{�
i

} is a projector onto an eigenspace of ⌦

1

corre-

sponding to nonzero eigenvalue �i (sorted in arbitrary but fixed order), it is also a

projector onto an eigenspace of (M
1

, G
1

) corresponding to the same eigenvalue. By

compactness, any nonzero element of the spectrum of ⌦

1

is isolated and an eigenvalue,

and by equality of spectra corresponds to an isolated point in the spectrum �(M
1

, G
1

).

As a result, one may write the projector onto the eigenspace associated with �i of ⌦

1

as P⌦1
{�

i

} :=

1

2⇡◆

´
�

�

i

(⇣I
1

� ⌦

1

)

�1d⇣, where ��
i

is a closed Cauchy curve enclosing �i,

and the projector onto the space associated with element �i of the spectrum of pair

(M
1

, G
1

) as P (M1,G1)

{�
i

} :=

1

2⇡◆

´
�

�

i

(⇣G
1

�M
1

)

�1G
1

d⇣ (See Gohberg et al. (1990, Ch.
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I.2 and IV.1)). Since ⌦

1

= G�1

1

M
1

,

P (M1,G1)

{�
i

} =

1

2⇡◆

ˆ
�

�

i

(⇣G
1

�M
1

)

�1G
1

d⇣ =

1

2⇡◆

ˆ
�

�

i

((G
1

G�1

1

)(⇣G
1

�M
1

))

�1G
1

d⇣ (4)

=

1

2⇡◆

ˆ
�

�

i

((G
1

)(⇣I
1

� ⌦

1

))

�1G
1

d⇣

=

1

2⇡◆

ˆ
�

�

i

(⇣I
1

� ⌦

1

)

�1G�1

1

G
1

d⇣

= P⌦1
{�

i

}

Compactness also guarantees that the dimension of the image of P{�
i

} is finite (Go-

hberg et al. , 1990, Thm II.3.2), and so by equality of spectra, the subspaces associated

with points not equal to zero in the spectrum of (M
1

, G
1

) are all finite-dimensional.

As a result, we may choose for each i, a finite set of basis vectors, of cardinality ki, for

the space ImP{�
i

} and a basis for the image of the pair (MP{�
i

}, GP{�
i

}) which must

be of dimension ki as GP{�
i

} must be of full rank since G
1

is. In particular, as on this

space the operator pair has a representation as a pair of ki⇥ki-dimensional matrices,

we may without loss of generality use orthonormal basis vectors {q1

i1, . . . , q
1

ik
i

} for the

image of (MP{�
i

}, GP{�
i

}) and {p1

i1, . . . , p
1

ik
i

} for ImP{�
i

} such that with respect to

these bases, M and G are upper triangular with diagonal elements of M and G iden-

tically equal to �i and ⌧i, respectively, where �
i

⌧
i

= �i. Such a representation exists

by the generalized Schur decomposition for finite-dimensional matrix pairs (Stewart

& Sun, 1990, Th. VI.1.9). Note that while these basis vectors are orthogonal within

each block, in general ImP{�
i

} is not necessarily orthogonal to ImP{�
j

} for i 6= j as

these are oblique, not orthogonal projections.

For Ker ⇡
1

, compactness of ⌦

2

permits an analogous construction of a countable

sequence of finite-dimensional eigenprojections associated to isolated points of the

spectrum, with the difference that the projection onto the space associated with

point �i in the spectrum �(M
2

, G
2

) is equal to projection associated with nonzero
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eigenvalue 1

�
i

2 �(⌦

2

). That is to say, in the notation above, P (M2,G2)

{�
i

} = P⌦2

{ 1
�

i

}

for �i 6= 1. Since Im P⌦2

{ 1
�

i

} is a finite-dimensional subspace of dimension ki, and

since MP (M2,G2)

{�
i

} is full rank since M
2

is, we may define sets of orthonormal basis

vectors {q2

i1, . . . , q
2

ik
i

} on the image of (MP (M2,G2)

{�
i

} , GP (M2,G2)

{�
i

} ) and {p2

i1, . . . , p
2

ik
i

} on

ImP (M2,G2)

{�
i

} such that with respect to these basis vectors, (M, G) has a representation

as a pair of ki⇥ki upper-triangular Schur matrices with diagonal elements identically

equal to the corresponding eigenvalue pair {�i, ⌧i} where �
i

⌧
i

= �i.

For the space Im ⇡
1

\Span{p1

11

, . . . , p1

1k1
, p1

21,...}, choose choose an arbitrary com-

plete orthonormal basis, say {p1?
1

, p1?
2

, . . .} and for Im ⇡
2

\Span{q1

11

, . . . , q1

1k1
, q1

21,...},
choose a basis {q1?

1

, q1?
2

, . . .}. Likewise, for the space Ker ⇡
1

\Span{p2

11

, . . . , p2

1k1
, p2

21,...},
choose choose an arbitrary complete orthonormal basis, say {p2?

1

, p2?
2

, . . .} and for

Ker ⇡
2

\Span{q2

11

, . . . , q2

1k1
, q2

21,...} choose a basis {q2?
1

, q2?
2

, . . .}. These bases may in

general be infinite dimensional and are not necessarily orthogonal to the bases defined

for other spaces. To produce the stated decomposition, these bases will be used to

construct an orthogonal basis with the desired properties.

To produce the desired decomposition, order the sets of vectors as ({p1

11

, . . . , p1

1k1
},

{p1

21

, . . . , p1

2k2
}, . . . , {p1?

1

, p1?
2

, . . .}, . . . , {p2

11

, . . . , p2

1k1
}, {p2

21

, . . . , p2

2k2
}, . . . , {p2?

1

, p2?
2

, . . .}, . . .)
and ({q1

11

, . . . , q1

1k1
}, {q1

21

, . . . , q1

2k2
}, . . . , {q1?

1

, q1?
2

, . . .}, . . . , {q2

11

, . . . , q2

1k1
}, {q2

21

, . . . , q2

2k2
},

. . . , {q2?
1

, q2?
2

, . . .}, . . .) and apply Gram-Schmidt orthonormalization to the count-

able sequences to produce a pair of orthonormal bases {p̃1

11

, . . . , p̃1

1k1
, p̃1

21, . . . , p̃
1?
1

, . . . ,

p̃2

11

, . . . , p̃2

1k1
,p̃2

21, . . . , p̃
2?
1

, . . .} and {q̃1

11

, . . . , q̃1

1k1
, q̃1

21, . . . , q̃
1?
1

, . . . , q̃2

11

, . . . , q̃2

1k1
, q̃2

21, . . . , q̃
2?
1

, . . .}
of HX and HY respectively. We may then define E

1

= Span{p̃1

11

, . . . , p̃1

1k1
, p̃1

21, . . .},
F

1

= Span{q̃1

11

, . . . , q̃1

1k1
, q̃1

21, . . .}, E?
1

= Span{p̃1?
1

, p̃1?
2

, . . .}, F?
1

= Span{q̃1?
1

, q̃1?
2

, . . .},
E

2

= Span{p̃2

11

, . . . , p̃2

1k1
, p̃2

21, . . .}, F
2

= Span{q̃2

11

, . . . , q̃2

1k1
, q̃2

21, . . .} E?
2

= Span{p̃2?
1

, p̃2?
2

, . . .},
and F?

2

= Span{q̃2?
1

, q̃2?
2

, . . .}, and decompose (M, G) into its restrictions to these

spaces. We may define P and Q as the unitary operators whose rows are given

by the basis vectors. That is, let P 1

=

P1
i,j=1

⌦
p̃1

ij, .
↵
p̃1

ij, Q1

=

P1
i,j=1

⌦
q̃1

ij, .
↵
q̃1

ij,

174



P 1?
=

P1
i=1

⌦
p̃1?

i , .
↵
p̃1?

i , Q1?
=

P1
i=1

⌦
q̃1?
i , .

↵
q1?
i , P 2

=

P1
i,j=1

⌦
p̃2

ij, .
↵
p̃2

ij , Q2

=

P1
i,j=1

⌦
q̃2

ij, .
↵
q̃2

ij, P 2?
=

P1
i=1

⌦
p̃2?

i , .
↵
p̃2?

i , and Q2?
=

P1
i=1

⌦
q̃2?
i , .

↵
q2?
i .

I claim that with respect to these bases, (M
11

, G
11

), has the desired properties.

The proof of this fact follows by induction. Denote Pm =

Pm
i,j=1

⌦
p̃1

ij, .
↵
p̃1

ij and

Qm =

Pm
i,j=1

⌦
q̃1

ij, .
↵
q̃1

ij. To show (M
11

, G
11

) are upper-triangular with respect to this

basis, it suffices to show (I �Qs)MPs = (I �Qs)GPs = 0 for all s 2 N. It then also

follows that (I � Q1

)MP 1

= (I � Q1

)GP 1

= 0, and so the (2, 1), (3, 1) and (4, 1)

elements of M and G are indeed 0 as claimed. To see this, note that by definition

of a closed span, for any x 2 E
1

, for all � > 0, 9s such that kPsx � xk < �. Since

M and G are continuous, for any ✏ > 0 there exists � > 0 such that kzk < � implies

kMzk < ✏, kGzk < ✏, and so for any x 2 HX , 9s 2 N s.t. k(I � Q1

)MP 1xk =

k(I �Q1

)MPsxk+ k(I �Q1

)M(P 1 � Ps)xk < ✏ and similarly k(I �Q1

)GP 1xk < ✏.

Begin by showing that the first step of the induction chain holds. By construction

of the generalized Schur decomposition for the finite-dimensional matrix pair, q̃1

11

=

q1

11

=

1

kGp̃1
11kGp̃1

11

and so (I � Q
1

)GP
1

= 0 and likewise, since p̃1

11

satisfies Mp̃1

11

=

�
1

Gp̃1

11

= �
1

kGp̃1

11

k q̃1

11

, (I � Q
1

)MP
1

= 0. Next, for arbitrary index s = k ⇥ `

assume the inductive hypothesis (I � Qs�1

)MPs�1

= (I � Qs�1

)GPs�1

= 0. By the

Gram-Schmidt process, p̃1

s =

1

k(I�P
s�1)p1

s

k(I � Ps�1

)p1

s. Since p1

s is a generalized Schur

vector of a finite-dimensional matrix pair,

q1

s =

1

k(I �P`�1

j=1

⌦
q1

k,j, .
↵
q1

k,j)Gp1

sk
(I �

`�1X

j=1

⌦
q1

k,j, .
↵
q1

k,j)Gp1

s (⇤)

and

(I �
`�1X

j=1

⌦
q1

k,j, .
↵
q1

k,j)Mp1

s = �k(I �
`�1X

j=1

⌦
q1

k,j, .
↵
q1

k,j)Gp1

s (⇤⇤)

, or, in words, p1

s is a generalized eigenvector of the matrix pair on the space orthogonal

to previous generalized Schur vectors within the block. Now consider (I �Qs)Gp̃1

s =

1

k(I�P
s�1)p1

s

k(I �Qs)G(I �Ps�1

)p1

s =

1

k(I�P
s�1)p1

s

k(I �Qs)Gp1

s by the inductive hypoth-
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esis. By (⇤), Gp1

s 2 span{q1

k,1, . . . , q
1

s} ⇢ span{q̃1

1

, . . . , q̃1

s} so (I � Qs)Gp̃1

s = 0, and

since by the inductive hypothesis (I � Qs)Gp̃1

m = 0 for m < s, (I � Qs)GPs = 0.

Similarly, by (⇤⇤) and the inductive hypothesis, (I � Qs)Mp̃1

s = 0, so it is also the

case that (I � Qs)MPs = 0. By induction, (I � Qs)MPs = (I � Qs)GPs = 0 for all

s 2 N.

To show that diagonals of (M
11

, G
11

) are the generalized eigenvalues, note that the

sth diagonal elements with respect to this basis are given by hMp̃1

s, q̃
1

si and hGp̃1

s, q̃
1

si.
Since p̃1

s =

1

k(I�P
s�1)p1

s

k(I � Ps�1

)p1

s, q̃1

s =

1

k(I�Q
s�1)q1

s

k(I � Qs�1

)q1

s , (I � Qs�1

)M(I �
Ps�1

) = (I � Qs�1

)M by triangularity, and Qs�1

is idempotent and self-adjoint

since it is an orthogonal projection, hMp̃1

s, q̃
1

si =

1

k(I�P
s�1)p1

s

k hMp1

s, q̃
1

si, and simi-

larly hGp̃1

s, q̃
1

si =

1

k(I�P
s�1)p1

s

k hGp1

s, q̃
1

si. By the finite-dimensional generalized Schur

decomposition, (⇤⇤) holds, and so hMp̃1

s, q̃
1

si / hGp̃1

s, q̃
1

si = �k, and so (M
11

, G
11

) has

the generalized eigenvalues along the diagonals as desired.

To demonstrate that the (3, 2) and (4, 2) blocks of (M, G) are equal to 0 is equiv-

alent to requiring that (I � [Q1, Q1?
])M [P 1, P 1?

] = (I � [Q1, Q1?
])G[P 1, P 1?

] =

0. Because ({p1

11

, . . . , p1

1k1
}, {p1

21

, . . . , p1

2k2
}, . . . , {p1?

1

, p1?
2

, . . .}, . . .) span Im ⇡
1

and

({q1

11

, . . . , q1

1k1
}, {q1

21

, . . . , q1

2k2
}, . . . , {q1?

1

, q1?
2

, . . .}, . . .) span Im ⇡
2

, we have by 2 that

Im M [P 1, P 1?
] ⇢ Im ⇡

2

= Im [Q1, Q1?
] and Im G[P 1, P 1?

] ⇢ Im ⇡
2

= Im [Q1, Q1?
]

so M [P 1, P 1?
] = [Q1, Q1?

]M [P 1, P 1?
] and G[P 1, P 1?

] = [Q1, Q1?
]G[P 1, P 1?

] so or-

thogonality holds.

The proof of the upper-triangular structure of (M
22

, G
22

) proceeds similarly to

the above, by induction. Denote P 2

m =

Pm
i,j=1

⌦
p̃2

ij, .
↵
p̃2

ij and Q2

m =

Pm
i,j=1

⌦
q̃2

ij, .
↵
q̃2

ij.

Further, denote Qu
m = [Q1, Q1?, Q2

m] the projection onto the set of basis vectors of HY

up to q̃2

m and similarly P u
m = [P 1, P 1?, P 2

m]. To show (A
22

, B
22

) are upper-triangular

with respect to this basis, it suffices to show (I�Qu
s )MP 2

s = (I�Qu
s )GP 2

s = 0 for all

s 2 N. It then also follows by analogous ��✏ argument that (I�[Q1, Q1?, Q2

])MP 2

=

(I � [Q1, Q1?, Q2

])GP 2

= 0, and so the (4, 3) elements of M and G are 0 as claimed.
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The proof is essentially identical to that for (M
11

, G
11

) except that all vectors are

orthogonalized with respect to previous basis vectors, and the generalized Schur form

of each matrix pair constructs q2

ij from M instead of G, as on Ker ⇡
1

the spectrum

excludes 0 and so M
2

is guaranteed to be invertible while G
2

is not.

Begin by showing the first step of the induction for (M
22

, G
22

). By construc-

tion of the generalized Schur decomposition for the finite-dimensional matrix pair,

q̃2

11

= (I � [Q1, Q1?
])q2

11

=

(I�[Q1,Q1?
])

kMp2
11k Mp2

11

while p̃2

11

= (I � [P 1, P 1?
])p2

11

. As

shown above, (I � [Q1, Q1?
])M [P 1, P 1?

] = 0 and so q̃2

11

=

(I�[Q1,Q1?
])

kMp2
11k Mp̃2

11

and

so (I � Qu
1

)MP u
1

= 0. Likewise, since p̃2

11

satisfies (I � [Q1, Q1?
])Gp2

11

=

1

�
(I �

[Q1, Q1?
])Mp2

11

=

1

�
kMp2

11

k q̃2

11

, (I�Qu
1

)BP u
1

= 0 also. This shows that the first step

of the induction holds: the continuation proceeds as for (M
11

, G
11

) except switching

the order of M and G. Similarly, the presence of the eigenvalues along the diagonals

is shown in a completely analogous manner.

It remains to show that (M?
11

, G?
11

) satisfies �(M?
11

, G?
11

) ⇢ {0}. In this, I fol-

low Gohberg et al. (1990, Lemma II.3.4) closely. By construction, (M?
11

z, G?
11

z) =

(Q?
1

M
1

z,Q?
1

G
1

z) for all z 2 E?
1

. By assumption, G is a bounded operator, so

G
1

must be also and so G�1

1

Q?
1

G
1

must be as well. Since the compact operators

are a closed ideal within the algebra of bounded operators on a Banach space (see,

e.g. (Carl & Stephani, 1990)) and G�1

1

M
1

is compact by assumption, G�1

1

Q?
1

M
1

=

G�1

1

Q?
1

G
1

G�1

1

M
1

is compact also, as is ⌦

?
1

:= P?
1

G�1

1

Q?
1

M
1

P?
1

, its restriction to

E?
1

. Suppose for contradiction that µ is a nonzero element of �(M?
11

, G?
11

). Then

by reasoning entirely analogous to .8, �(M?
11

, G?
11

) = �(⌦

?
1

) and so by compactness

µ is an isolated point in the spectrum of ⌦

?
1

. Further, ⌦

?⇤
1

must have µ̄ 2 �(⌦

?⇤
1

)

as a nonzero point in the spectrum, and so by compactness, it must be an isolated

point in the spectrum associated with (at least one) nonzero eigenvector, which we

will call x
0

2 E?
1

. The upper triangular decomposition of (M
1

, G
1

) may be used to

show ⌦

?⇤
1

= P?
1

(G�1

1

M
1

)

⇤P?
1

. To see this, note that multiplication of the the upper
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triangular decomposition of M
1

by the inverse of the upper triangular decomposition

of G
1

yields

(G�1

1

M
1

)

⇤
=

0

B@
G�1

11

M
11

�G�1

11

Goff
11

G?�1

11

M off
11

0 G?�1

11

M?
11

1

CA

⇤

=

0

B@
(G�1

11

M
11

)

⇤
0

(�G�1

11

Goff
11

G?�1

11

M off
11

)

⇤
⌦

?⇤
1

1

CA

and so ⌦

?⇤
1

= P?
1

(G�1

1

M
1

)

⇤P?
1

as claimed. As a result, x
0

is also an eigenvector

of compact operator (G�1

1

M
1

)

⇤ associated with eigenvalue µ̄, and so x
0

2 E?
1

\
Im P

(G�1
1 M1)

⇤

{µ̄} .

However, we know also by 4 that Im P
G�1

1 M1

{µ} = Im P (M1,G1)

{µ} ⇢ E
1

, and by or-

thogonality of the decompositions, E?
1

is orthogonal to Im P
G�1

1 M1

{µ} , and so must be

a subset of Ker (PG�1
1 M1

{µ} )

⇤. Since this is an isolated eigenvalue of an operator on a

Hilbert space, Gohberg et al. (1990, Prop I.2.5) gives that (P
G�1

1 M1

{µ} )

⇤
= P

(G�1
1 M1)

⇤

{µ̄} ,

and so E?
1

⇢ Ker P
(G�1

1 M1)

⇤

{µ̄} . This contradicts the previous assertion that there is a

nonzero element x
0

in E?
1

\ Im P
(G�1

1 M1)

⇤

{µ̄} and so the original assertion that there is

some µ 6= 0 in �(M?
11

, G?
11

).

The proof that (M?
22

, G?
22

) satisfies �(M?
22

, G?
22

) ⇢ {1} is essentially similar to the

above, except using ((I� [Q1, Q1?
])M(I� [P 1, P 1?

]), (I� [Q1, Q1?
])G(I� [P 1, P 1?

]))

in place of (M
1

, G
1

) and reversing the order of M and G.

Perturbation Theory for the Generalized Schur De-

composition

Perturbation for generalized Schur subspaces associated with a subset of the spectrum

is covered in Stewart (1973) for perturbations measured in Frobenius norm. In this

section, I extend the results to perturbation in operator norm. In addition to bounds

on the error in terms of the subspace angle between the approximate and true deflating
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subspaces, this section will also consider approximation of the Rayleigh components

of the operator pair corresponding to these subspaces. First, set up the generalized

Schur subspace approximation problem exactly as in Stewart (1973).

Let (A, B) 2 L(H
1

! H
2

,H
1

! H
2

) and unitary operators X = (X
1

, X
2

) H
1

!
H

1

and Y = (Y
1

, Y
2

) H
2

! H
2

decompose (A, B) as

(Y ⇤AX, Y ⇤BX) =

0

B@

2

64
A

11

A
12

A
21

A
22

3

75 ,

2

64
B

11

B
12

B
21

B
22

3

75

1

CA

To find a perturbation bound, we search for the minimal rotations

UX =

0

B@
I �P ⇤

P I

1

CA

0

B@
(I + P ⇤P )

�1/2

0

0 (I + PP ⇤
)

�1/2

1

CA

UY =

0

B@
I �Q⇤

Q I

1

CA

0

B@
(I + Q⇤Q)

�1/2

0

0 (I + QQ⇤
)

�1/2

1

CA

such that X 0
= (X 0

1

, X 0
2

) = XUX and Y 0
= (Y 0

1

, Y 0
2

) = Y UY generate subspaces

R(X 0
1

) = X ⇢ H
1

and R(Y 0
1

) = Y ⇢ H
2

which form a deflating pair of (A, B). A

pair of subspaces X , Y form a deflating pair if and only if (A0
21

, B0
21

) = (0, 0). This

is equivalent to

QA
11

� A
22

P = A
21

�QA
12

P

QB
11

�B
22

P = B
21

�QB
12

P (5)

In order to find (Q, P ) which satisfy the above condition and are small relative to

perturbations in operator norm, define a norm over the space of operator pairs over

subspaces conformable to the pair (Q, P ) as the largest operator norm of an operator
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in the pair, i.e.

k(Q, P )kB = max(kQk, kPk)

If we can show that the conditions of Stewart (1973) Theorem 3.1 are satisfied for

5 using this norm, then this theorem will provide a bound on the operator norm of

the rotation needed to generate such a decomposition. Define

T (Q, P ) =

✓
QA

11

� A
22

P QB
11

�B
22

P

◆

g =

✓
A

21

B
21

◆

'(Q, P ) = ( QA
12

P QB
12

P )

To show a quadratic bound for '(Q, P ), begin with the first term:

k'
1

(Q, P )k  kQk kPk kA
12

k

 k(Q, P )k2B kA12

k

Combining with identical calculations for the second term yields quadratic bound

k'(Q, P )kB  ⌘k(Q, P )k2B (6)

where

⌘ = k(A
12

, B
12

)kB

To demonstrate the Lipschitz property for this operator, again note
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k'
1

(Q, P )� '
1

(

˜Q, ˜P )k 
���Q� ˜Q

��� kPk kA
12

k+

��� ˜Q
���

���P � ˜P
��� kA

12

k

 2 max(k(Q, P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q, P � ˜P )kB kA12

k

Combining with identical calculations for the second term gives Lipschitz condition

k'(Q, P )� '(

˜Q, ˜P )kB  2⌘max(k(Q, P )kB, k( ˜Q, ˜P )kB)k(Q� ˜Q, P � ˜P )kB (7)

These demonstrate that conditions (i) and (ii) of Theorem 3.1 in Stewart (1973)

continue to hold for the norm k.kB
Again defining

� = kgkB

� = kT�1k�1

B

one obtains

Lemma .11. Suppose T (Q, P ) = g�'(Q, P ) with T , g, and ' defined as above, where

' satisfies the quadratic bound and Lipschitz conditions. Let � > 0 and �⌘/�2 < 1/4.

Then

k
✓

Q, P

◆
kB < 2

�

�

To determine precisely how the above theorem imposes bounds on errors in Schur

subspaces, it is necessary to examine the stability properties of the term �. Define

dif(A, B) = dif(
A

11

B
11

A
22

B
22

) = kT�1k�1

B (8)
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Note that this operator depends on only the block diagonal terms of the pair

(A, B). Define the perturbation (E,F ) 2 L(H
1

! H
2

,H
1

! H
2

) and define a parti-

tion of the operator conformable with that of (A, B) by (Eij, Fij) = (Y H
i EXj, Y H

i FXj).

We would like to define a bound on the term

dif(A + E,B + F ) = dif(
A

11

+ E
11

B
11

+ F
11

A
22

+ F
22

B
22

+ F
22

)

Using the alternate characterization dif(A, B) = inf
kZkB=1

kT (Z)kB where Z 2 B, one

can derive lower and upper bounds

dif(A, B) + ⌫(E,F ) � dif(A + E,B + F ) � dif(A, B)� ⌫(E,F )

where

⌫(E,F ) = max(kE
11

k+ kE
22

k, kF
11

k+ kF
22

k)

Combing this bound with the previous lemma, obtain

Theorem .2. Let (A, B) and (E,F ) 2 L(H
1

! H
2

,H
1

! H
2

) and X = (X
1

, X
2

)

H
1

! H
1

and Y = (Y
1

, Y
2

) H
2

! H
2

be unitary operators such that R(X
1

) and

R(Y
1

) form a deflating pair of subspaces for the operator pair (A, B). Suppose these

operators partition the pairs such that

(Y HAX, Y HBX) =

0

B@

2

64
A

11

A
12

0 A
22

3

75 ,

2

64
B

11

B
12

0 B
22

3

75

1

CA

(Y HEX, Y HFX) =

0

B@

2

64
E

11

E
12

E
21

E
22

3

75 ,

2

64
F

11

F
12

F
21

F
22

3

75

1

CA

Define

� = dif(A, B)� ⌫(E,F )
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along with

� = k( E
21

F
21

)

kB

and

⌘ = k(A
12

+ E
12

, B
12

+ F
12

)kB

Suppose � > 0 and �⌘/�2 < 1/4. Then

Then there is a pair of operators (Q, P ) with

����

✓
Q, P

◆����
B
 2�

�

such that

X 0
1

= (X
1

+ X
2

P )(I + P ⇤P )

�1/2

Y 0
1

= (Y
1

+ Y
2

Q)(I + Q⇤Q)

�1/2

and R(X 0
1

) and R(Y 0
1

) form a pair of deflating subspaces for (A + E,B + F ).

This is essentially identical to Theorem 5.7 of Stewart (1973) aside from the def-

inition of the norms via which the terms are defined and the resulting difference in

the lower bound on �.

Via Theorem 2.7 in Stewart (1973), we know that

k sin ⇥(R(X
1

), R(X 0
1

))k  k tan ⇥(R(X
1

), R(X 0
1

))k = kPk

k sin ⇥(R(Y
1

), R(Y 0
1

))k  k tan ⇥(R(Y
1

), R(Y 0
1

))k = kQk

both of which are less than
����

✓
Q, P

◆����
B
. As a result, we have the following

corollary

Corollary .1. Suppose (A, B), (E,F ), X and Y satisfy the conditions of the theorem

above. Then the operator pair (A + E,B + F ) has a right generalized Schur subspace
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R(X 0
1

) such that kProjX0
1
� ProjX1k2  2�

�
and associated left generalized Schur

subspace R(Y 0
1

) such that kProjY 01 � ProjY1k2  2�
�

As a result, for appropriately small approximation error in the operator pair of

interest, a fixed, well-separated, primary generalized Schur subspace (and associated

generalized Schur functions or vectors whose range spans it) of the perturbed pair

differs by an amount which is on the order of the operator norm of the perturbation

from the corresponding true subspace (and associated functions). This dependence

on the order of the operator norm of the error may be particularly useful in the case of

large or infinite-dimensional subspaces, for which the Frobenius norm of the error may

increase as the square root of the dimension of the subspace. One loses, however, the

set of sharp characterizations of the difference term � in terms of spectral properties

of the operator to be approximated which may be obtained when it is defined via

the Frobenius norm. This seems necessary in general, however, as the Frobenius

or Hilbert-Schmidt norm may fail to be finite in the infinite-dimensional case for

otherwise well-behaved operators.

To bound the approximation error in the components (A
11

, B
11

) induced by an

approximation, it is helpful to introduce an additional pair of subspaces to correspond

to the right deflating pair R(X
1

) and R(Y
1

). Defining (X
1

, X
2

) and (Y
1

, Y
2

) as above

so R(X
1

) and R(Y
1

) form a deflating pair, we look for operators V
1

and U
2

and R

and S with V
1

= Y
1

+ Y
2

R⇤ and U
2

= X
2

�X
1

S to solve

(V
1

, Y
2

)

⇤A(X
1

, U
2

) =

0

B@
I R

0 I

1

CA

0

B@
A

11

A
12

0 A
22

1

CA

0

B@
I �S

0 I

1

CA =

0

B@
A

11

0

0 A
22

1

CA

(V
1

, Y
2

)

⇤B(X
1

, U
2

) =

0

B@
I R

0 I

1

CA

0

B@
B

11

B
12

0 B
22

1

CA

0

B@
I �S

0 I

1

CA =

0

B@
B

11

0

0 B
22

1

CA (9)
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This holds if there exist S, R such that

A
11

S �RA
22

= A
12

B
11

S �RB
22

= B
12

Theorem 5.9 in Stewart (1973) notes that if T is nonsingular, there exist S and

R which solve this equation, and so (X
1

, U
2

) and (V
1

, Y
2

), which are not in gen-

eral unitary, though are nonsingular, block diagonalize (A, B). Further, by the

definitions of V
1

and U
2

, one has kV
1

k = k sec ⇥(R(V
1

), R(Y
1

)k = k sec ⇥

1

k and

kU
2

k = k sec ⇥(R(U
2

), R(X
2

)k = k sec ⇥

2

k .

This block diagonalization can be used along with the perturbation formula to

construct bounds on the approximation error in (A
11

, B
11

). Consider a perturbation

(E,F ) of (A, B) and define

((V
1

, Y
2

)

⇤E(X
1

, U
2

), (V
1

, Y
2

)

⇤F (X
1

, U
2

)) =

0

B@

0

B@
E

11

E
12

E
21

E
22

1

CA ,

0

B@
F

11

F
12

F
21

F
22

1

CA

1

CA

so that perturbed operator pair satisfies

((V
1

, Y
2

)

⇤
(A + E)(X

1

, U
2

), (V
1

, Y
2

)

⇤
(B + F )(X

1

, U
2

)) =

0

B@

0

B@
A

11

+ E
11

E
12

E
21

A
22

+ E
22

1

CA ,

0

B@
B

11

+ F
11

F
12

F
21

B
22

+ F
22

1

CA

1

CA (10)

then, following Stewart & Sun (1990) VI.2.15, we have

Theorem .3. Define

� = dif(A, B)�max(kE
11

k+ kE
22

k, kF
11

k+ kF
22

k)
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along with

� = k( E
21

F
21

)

kB

and

⌘ = k(E
12

, F
12

)kB

Suppose � > 0 and �⌘/�2 < 1/4.

Then there is a pair of operators (Q, P ) with

����

✓
Q, P

◆����
B
 2�

�

such that

X 0
1

= X
1

+ U
2

P

Y 0
2

= Y
2

+ V
1

Q⇤

satisfy

((V
1

, Y 0
2

)

⇤
(A + E)(X 0

1

, U
2

), (V
1

, Y 0
2

)

⇤
(B + F )(X 0

1

, U
2

)) =

0

B@

0

B@
A

11

+ E
11

+ E
12

P E
12

0 A
22

+ E
22

+ QE
12

1

CA ,

0

B@
B

11

+ F
11

+ F
12

P F
12

0 B
22

+ F
22

+ QF
12

1

CA

1

CA

(11)

and so (A0
11

, B0
11

) =(A
11

+ E
11

+ E
12

P, B
11

+ F
11

+ F
12

P ) form the generalized

Rayleigh quotients of the perturbed operator pair, and as a result, we have

kA
11

� A0
11

k  kE
11

+ E
12

Pk  kE
11

k+ kE
12

k2�
�

kB
11

�B0
11

k  kF
11

+ F
12

Pk  kF
11

k+ kF
12

k2�
�
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Proof. Existence of a unique solution (Q, P ) with the specified properties follows if

there exist (Q, P ) such that left multiplying (10) by

0

B@
I 0

Q I

1

CA and right multiplying

by

0

B@
I 0

P I

1

CA sets the lower left elements in (11) to 0. This holds if there is unique

solution to

0

B@
Q(A

11

+ E
11

) + (A
22

+ E
22

)P

Q(B
11

+ F
11

) + (B
22

+ F
22

)P

1

CA =

0

B@
E

21

F
21

1

CA +

0

B@
QE

12

P

QF
12

P

1

CA

Existence of a unique solution here follows from application of Theorem 3.1 in

Stewart (1973), the Lipschitz and norm bound shown for the quadratic component

above, and the lower bound on � which lower bounds the minimum singular value of

the lefthand side.

187



Appendix B: Existence of Solutions

To Rational Expectations Models

with Function-Valued States

In this appendix, I provide a set of sufficient conditions for the existence of a differ-

entiable and stable solution to a recursive model with function valued states, which

is the object for which an approximation algorithm is described in the main paper.

Local Existence of an Equilibrium

The requirement that the derivatives of the equilibrium policy operators satisfy the

formulas (4.3) and (4.6) in the main paper represents a necessary condition that any

differentiable recursive equilibrium solution must satisfy at the steady state. To ensure

that an equilibrium characterized by this condition in fact exists and that it is locally

stable, conditions beyond those needed to justify the existence of stable derivatives at

this point may be needed. Existence of equilibria has previously been demonstrated in

dynamic heterogeneous agent models of various types: for models with no aggregate

disturbances, see Acemoglu & Jensen (2012), for models with aggregate disturbances

see Miao (2006) or Bergin & Bernhardt (1995), and for models with finite numbers

of agents, see Mertens & Judd (2012). In the case that an equilibrium of the model
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may be characterized by the methods used in those papers, our method provides

a numerical procedure to characterize a set of local properties. However, it may

be desirable, in the case of a wide class of models which may be characterized by

the methods in this paper, to provide a general existence argument based on the

linearization. As such, we demonstrate that the local existence argument of Jin &

Judd (2002) may be extended to the case of infinite-dimensional state variables.

In particular, under some additional continuity conditions, an implicit function

theorem in Banach spaces (see e.g. Kesavan (2004, Ch. 1)) may be used to show

that the conditions provided under which a linearization exist are also sufficient for

the existence of an equilibrium with no aggregate shocks in a neighborhood of a

steady state. This is a separate task from demonstration of the existence of a steady

state equilibrium, which must be shown by other methods, as in Acemoglu & Jensen

(2012) or by some other fixed point argument valid in infinite-dimensional spaces. In

some cases, especially if individual agent decision rules are correspondence valued,

the existence of a steady state may require the introduction of auxiliary state vari-

ables to generate a Markov structure; this occurs in Acemoglu & Jensen (2012) and

Miao (2006), along with, more generally, much of the literature on implicit recursive

contracts. As characterizing a steady state is a model-specific task, we will simply

require that existence has been verified for the model in question and that the equi-

librium conditions which are provided to the linearization procedure are sufficient to

characterize an equilibrium.

Given the existence of an equilibrium away from the steady state but with no

aggregate shocks, one may prove existence of an equilibrium with “small” aggregate

shocks by applying the implicit function theorem to the deterministic system around

� = 0 as in Mertens & Judd (2012). Unfortunately, the continuation argument they

use to demonstrate existence in the presence of large noise does not directly apply

in this case, as it requires compactness of the equilibrium operators, which cannot
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generally be guaranteed when the state-space is infinite-dimensional. As such, the

approximations computed in this paper should be considered as valid in the “small

noise” regime.

Formally, we have the following two theorems: proofs are provided in the next

section.

Theorem .4. Suppose there exist x⇤, y⇤ such that F (x⇤, y⇤, x⇤, y⇤, 0) = 0, F is con-

tinuous with uniformly continuous Fréchet derivatives with respect to x, y, x0, and

y0 in a neighborhood ⌦ ⇥ ⌦ ⇢ H
1

⇥ H
1

of x⇤, y⇤, x⇤, y⇤, with Fréchet derivatives at

this point given by B = �Fx,�Fy, A = Fx0 , Fy0 such that (B, A) is a �-regular

operator pair satisfying the conditions of Lemma (5) on existence of Schur decom-

position for � the complex unit circle and so having generalized Schur decomposition

(B, A) = (Q⇤TU,Q⇤SU). Assume U
22

is complete and has bounded inverse on Im U
2

and M(y, x) := Fyy + (Fx0 � Fy0U
�1

22

U
21

)x : Hy,Hx ! H
2

has bounded inverse.

Then, there exists a neighborhood N of x⇤ in Hx and continuous, Fréchet differen-

tiable operators g(x), h(x) mapping N to Hy and Hx, respectively, such that for any

x
0

2 N , the sequence {xt, yt}1t=0

defined recursively by yt = g(xt), xt+1

= h(xt) satis-

fies F (xt, yt, xt+1

, yt+1

, 0) = 0 8t � 0 and converges in norm to x⇤, y⇤. Further, g(x)

and h(x) are themselves Fréchet differentiable with first derivatives gX = �U�1

22

U
21

and hX = (U
11

+ U
12

gX)

�1S�1

11

T
11

(U
11

+ U
12

gX).

Remark. Uniform continuity of the derivatives is needed to ensure convergence uni-

formly over time: a sufficient condition for this would be that F is twice continuously

differentiable in ⌦ ⇥ ⌦. The assumption of continuous Fréchet derivatives could be

replaced by strong Hadamard differentiability, with the corresponding weaker result

that the policy operators are Hadamard differentiable, using the implicit function the-

orem for Hadamard derivatives of Craven & Nashed (1982) with only minor changes

in the proof. Such a replacement may be necessary for certain classes of equilibrium

operators: Craven & Nashed (1982) provide examples of operators which are strongly
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Hadamard differentiable but not Fréchet differentiable. The same result may also be

used to relax the assumption that the inverse of M is bounded, at cost of a weaker

norm, which may be useful for example if M is compact. However, the argument

for existence of a stochastic equilibrium in the next theorem does rely on the as-

sumption that M has bounded inverse in a way that cannot be alleviated by using

this weaker version of the implicit function theorem. Note that this theorem requires

completeness of U
22

, ruling out cases analogous to those in which there are more sta-

ble eigenvalues than predetermined variables, in which there may be indeterminacy.

While in these cases at least one equilibrium may possibly still exist, this method of

proof does not apply directly.

Proof. See next section.

Next, one may use the deterministic recursive equilibrium constructed above,

along with another application of the implicit function theorem, to demonstrate ex-

istence of an equilibrium for � in a neighborhood of 0, and so with stochastic shocks.

The demonstration of existence follows closely the argument (but not the notation)

leading to Jin & Judd (2002, Theorem 6).

Theorem .5. Suppose the conditions of the previous theorem hold, that EF (x, y, x0, y0,�)

is continuous and three times continuously differentiable with respect to x, y, x0, y0 in

a neighborhood of (x⇤, y⇤, x⇤, y⇤, 0) and differentiable with respect to � at (x⇤, y⇤, x⇤, y⇤, 0),

and suppose further that [Fy, Fx0 ] has a bounded inverse from H
2

to Hy ⇥Hx and the

operator [Fy, Fx0 ]
�1

[Fy0 , Fy0gX ] : Hy⇥Hx ! Hy⇥Hx has spectrum inside the complex

unit circle. Let z satisfy Ez0 = 0 and have bounded support in Hx. Then, there exists

a neighborhood of � = 0 and a neighborhood U of x⇤ on which there exist bounded

functions with bounded derivatives g(x, �), h(x, �) satisfying g(x, 0) = g(x), h(x, 0) =

h(x) as defined in the previous theorem and EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) +

�⌘z0,�),�) = 0 for all � and x in this neighborhood.
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Remark. The increase from once to three times continuous differentiability here is

imposed in order to ensure uniform continuity of the second derivatives, which en-

ter through a chain rule condition due to the recursive construction. This theorem

demonstrates conditions which guarantee the existence of an implicit solution to a

set of equilibrium equations. This condition is still weaker than those of Jin & Judd

(2002), who require analyticity, albeit mainly for the ability to perform perturbations

to arbitrary order. The requirement of bounded support is somewhat restrictive, but

without other strong assumptions, is very hard to relax: see Jin & Judd (2002) for

discussion. Note that for this result to guarantee existence of an equilibrium, a sta-

tionary solution to EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) + �⌘z0,�),�) = 0 must be

a sufficient and not merely a necessary condition for equilibrium. That is, if desider-

ata for an equilibrium such as transversality or second order conditions are excluded

from F , the solution is not guaranteed to satisfy them. Often, auxiliary equations

may need to be added to the ‘natural’ characterization of a solution to fully charac-

terize an equilibrium, as in Miao (2006). However, the result does guarantee existence

of a candidate solution for which sufficient conditions may then be verified.

Proof. See next section.

Remark. In the case where the equilibrium conditions are differentiable also in �, the

implicit function characterizes the derivatives with respect to �.

Corollary. Let EF (x, y, x0, y0,�) be Fréchet differentiable in all its arguments (includ-

ing �) at (x⇤, y⇤, x⇤, y⇤, 0). Further, suppose � does not enter into F directly (as op-

posed to entering via the transition equation x
2

= h
2

(x
2

)+�z0). Then g(x, �), h(x, �)

are differentiable in � and have derivative at � = 0 given by g�(x, 0) = 0, h�(x, 0) = 0.

Proof. This follows from the implicit function theorem used to construct g(x, �), h(x, �)
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and the fact that, evaluated at � = 0

d

d�
EF (x, g(x), h(x) + �⌘z0, g(h(x) + �⌘z0),�) = E(Fx0(x, g(x), h(x), g(h(x)), 0)[⌘z0]

+ Fy0(x, g(x), h(x), g(h(x)), 0)gx(h(x))[⌘z0] + F�(x, g(x), h(x), g(h(x)), 0)).

By the assumption that Ez0 = 0 and the linearity of the Fréchet derivative for all

x, the first two terms are 0. By assumption F� = 0, so the final term disappears as

well.

Remark. This result is a direct extension to this setting of the result of Schmitt-Grohe

& Uribe (2004) that the first order impact of the standard deviation parameter is 0.

However, the result is slightly stronger, as the implicit function theorem used here

(as in Jin & Judd (2002)) takes as argument the policy operators as functions of

x, and so the implicit function theorem characterizes the partial derivative of the

operators g(.) and h(.) in the space of functions with respect to �. The implication is

that the zero first order effect of adding aggregate noise holds not only at the steady

state x⇤ but also at any other initial condition x, a result which may be useful for

extending models with transition dynamics. The assumption that F� = 0 is generally

not restrictive, as � is not a structural parameter but an auxiliary parameter scaling

the deviation of the equilibrium away from the nonstochastic steady state. To embed

structural assumptions regarding the variance of the shocks, the random element z

may be taken to have arbitrary (trace class) covariance operator, which is then scaled

by �.

Proofs

Theorem .4

Proof. Define the space of potential sequences of (aggregate) states `1(H
1

) as the
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space of sequences of deviations {xt, yt}1t=0

such that {xt + x⇤, yt + y⇤}1t=0

2 H
1

=

Hx ⇥Hy from time 0 to 1 endowed with the norm k{xt, yt}1t=0

k`1(H1)

=

P1
t=0

k(xt �
x⇤, yt� y⇤)kH1 having finite norm. Define also `1y0

(H
1

) as the subspace of `1(H
1

) con-

sisting of sequences {y
0

, {xt, yt}1t=1

}, that is, excluding x
0

, endowed with the relative

topology. These are Banach spaces since each element of a sequence is a member

of a Banach space and the space of norm summable sequences is complete. We

define an equilibrium as a sequence {xt, yt}1t=0

2 `1(H
1

) satisfying F (xt + x⇤, yt +

y⇤, xt+1

+ x⇤, yt+1

+ y⇤, 0) = 0 8t � 0 and endow the space of norm-summable se-

quences in H
2

with the `1(H
2

) norm k{zt}1t=0

k`1(H2)

=

P1
t=0

kztkH2 , making it also a

Banach space, and the operator F1
({xt, yt}1t=0

) = {F (xt +x⇤, yt +y⇤, xt+1

+x⇤, yt+1

+

y⇤, 0)}1t=0

a map from `1(H
1

)! `1(H
2

) (where boundedness follows if F (., ., ., ., 0) is

bounded from H
1

⇥ H
1

endowed with norm kx, ykH1 + kx0, y0kH1 is bounded). By

assumption {xt, yt}1t=0

= {0, 0}1t=0

satisfies F1
({0, 0}1t=0

) = 0. F1 is continuous

on an `1(H
1

) neighborhood of {0, 0}1t=0

since for any pair of sequences ({xt, yt}1t=0

)i,

({xt, yt}1t=0

)j, we have kF1
(({xt, yt}1t=0

)i)�F1
(({xt, yt}1t=0

)j)k`1(H2)

=

P1
t=0

kF (xi
t +

x⇤, yi
t +y⇤, xi

t+1

+x⇤, yi
t+1

+y⇤, 0)�F (xj
t +x⇤, yj

t +y⇤, xj
t+1

+x⇤, yj
t+1

+y⇤, 0)kH2 which is

bounded by the `1(H
1

) norm of the difference in arguments times the modulus of uni-

form continuity of F (xt+x⇤, yt+y⇤, xt+1

+x⇤, yt+1

+y⇤, 0), which is finite in a bounded

neighborhood of 0, 0, 0, 0 due to continuity of the Fréchet derivatives of F . Split the

arguments of F1 into (x
0

, s) 2 Hx ⇥ `1y0
(H

1

) and define @F1
@x0

and @F1
@s

as the partial

Fréchet derivatives of F1 with respect to x
0

and s, respectively. These exist and are

continuous at {x⇤, y⇤}1t=0

. This is easily seen for @F1
@x0

= {Fx(x⇤, y⇤, x⇤, y⇤), 0, 0, 0, ...}
since Fx is continuous by assumption. For s, this is a little less straightforward: its

rows are given by

[

@F1
({xt, yt}1t=0

)

@s
]

0

= [Fy(x0

+ x⇤, y
0

+ y⇤, x
1

+ x⇤, y
1

+ y⇤)

Fx0(x0

+ x⇤, y
0

+ y⇤, x
1

+ x⇤, y
1

+ y⇤) Fy0(x0

+ x⇤, y
0

+ y⇤, x
1

+ x⇤, y
1

+ y⇤) 0 0 . . . ]
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[

@F1
({xt, yt}1t=0

)

@s
]

1

=

[

0 Fx(x1

+ x⇤, y
1

+ y⇤, x
2

+ x⇤, y
2

+ y⇤) Fy(x1

+ x⇤, y
1

+ y⇤, x
2

+ x⇤, y
2

+ y⇤)

Fx0(x1

+ x⇤, y
1

+ y⇤, x
2

+ x⇤, y
2

+ y⇤) Fy0(x1

+ x⇤, y
1

, x
2

+ x⇤, y
2

) . . . ]

[

@F1
({xt, yt}1t=0

)

@s
]

2

= [

0 0 0 Fx(x2

+ x⇤, y
2

+ y⇤, x
3

+ x⇤, y
3

+ y⇤)

Fy(x2

+ x⇤, y
2

y⇤, x
3

+ x⇤, y
3

+ y⇤) Fx0(x3

+ x⇤, y
3

+ y⇤, x
4

+ x⇤, y
4

+ y⇤)

Fy0(x3

+ x⇤, y
3

, x
4

+ x⇤, y
4

) . . .]

etc.

It is a linear operator mapping sequences s = {y
0

, x
1

, y
1

, x
2

, y
2

, . . .} 2 `1y0
(H

1

) to

`1(H
2

), as each block is bounded and each row consists of a finite set of blocks.

Continuity of this operator (with respect to operator norm on the space L(`1y0
(H

1

)!
`1(H

2

)) is given by bounding

sup

ksk
`

1
y0

(H1)=1

k[@F
1

({xt, yt}1t=0

)i

@s
� @F1

({xt, yt}1t=0

)j

@s
]sk`1(H2)

which, if ({xt, yt}1t=0

)i and ({xt, yt}1t=0

)j are in the neighborhood over which the

Fréchet derivatives are uniformly continuous, is less than the sum of the moduli

of uniform continuity of Fx, Fy, Fx0 , and Fy0 (which is by assumption finite) times

the `1(H
1

) distance between the sequences. This inequality holds since for any row

of @F1
@s

, only the set of elements of the sequence corresponding to times t and t + 1

enters into the value of the operator.

Finally, to apply the implicit function theorem to F1 to solve for s as a function
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of x
0

, we must show that @F1({0,0}1
t=0)

@s
is invertible. To do this, we show that it is

surjective and injective. We prove that it is surjective constructively, by constructing,

for any {ai}1i=0

2 `1(H
2

) an element s 2 `1y0
(H

1

) such that @F1({0,0}1
t=0)

@s
s = {ai}1i=0

.

We may construct s recursively, using gX and hX as defined in the theorem to solve for

the values of y, x0, and y0 consistent with values of x and y at previous times. To find

the starting value, we solve a
0

= Fyy0

+ Fx0x1

+ Fy0y1

by finding y
0

and x
1

consistent

with a
0

under the assumption that y
1

may be constructed by the law of motion given

by gX , permitting all subsequent time periods to be solved for recursively. That is,

we find y
0

, x
1

solving a
0

= Fyy0

+ Fx0x1

+ Fy0gXx
1

= M(y
0

, x
1

). By invertibility

of M , we may define (y
0

, x
1

) = M�1a
0

and choose y
1

= gXx
1

so that the first row

of @F1({0,0}1
t=0)

@s
[{y

0

, {xt, yt}1t=1

}] equals a
0

by construction. To ensure that the next

row holds, with x
1

and y
1

= gXx
1

given, we must solve a
1

= [ Fx Fy ][

x
1

gXx
1

] +

[ Fx0 Fy0 ][

x
2

y
2

]. This equation has ‘fundamental solution’ for a
2

= 0 given by the

recursive update rule x
2

= hXx
1

and y
2

= gXhXx
1

. To find a general solution,

we may add to this values solving a
1

= [ Fx0 Fy0 ][

x̃
2

gX x̃
2

]. Applying the Schur

decomposition, this equals a
1

= Q⇤
[

S
11

S
12

0 S
22

][

(U
11

+ U
12

gX)x̃
2

(U
21

+ U
22

gX)x̃
2

] = Q⇤
1

S
11

(U
11

+

U
12

gX)x̃
2

using that U
21

+U
22

gX = 0 by construction. Q⇤
1

is invertible by unitarity of

Q, S
11

is invertible by �-regularity of the derivative pair, and (U
11

+U
12

gX) is invertible

by Lemma 1 in the main text, so x̃
2

= (U
11

+ U
12

gX)

�1S�1

11

Q
1

a
1

and x
2

= hXx
1

+ x̃
2

and y
2

= gXhXx
1

+ gX x̃
2

. We may then iterate these forward to find a fundamental

solution to the next row, and then add x̃
3

= (U
11

+U
12

gX)

�1S�1

11

Q
1

a
2

and gX x̃
3

to the

fundamental solution to find x
3

and y
3

. This process can be continued indefinitely,

resulting in the solution s({at}1t=0

) = {y
0,{xt, yt}1t=1

} given by (y
0

, x
1

) = M�1a
0

,

xk = hk�1

X x
1

+

Pk�1

j=1

hk�1�j
X (U

11

+ U
12

gX)

�1S�1

11

Q
1

aj for all k > 1 and yk = gXxk for
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all k > 0. We may demonstrate that s({at}1t=0

) 2 `1y0
(H

1

) since

1X

k=1

kxkkH
X

 k(M�1a
0

)k
1X

k=0

khk
Xk+k(U11

+U
12

gX)

�1S�1

11

Q
1

k(
1X

j=0

khj
Xk)

1X

k=1

kakk <1

since khk
Xk must, since its eigenvalues are bounded in modulus by 1, eventually be

of norm less than one, and so
P1

j=1

khj
Xk is a geometric series with a finite bound.

Similarly,
P1

k=0

kykkH
X

 ky
0

k + kgXk
P1

k=1

kxkkH
X

< 1. So, we have shown that
@F1({x⇤,y⇤}1

t=0)

@s
is surjective map in L(`1y0

(H
1

)! `1(H
2

)).

To show invertibility, by the bounded inverse theorem it is sufficient to show that

this map is unique. We prove this by contradiction. First, note that completeness

of U
22

and the restriction of the domain of @F1({0,0}1
t=0)

@s
to `1y0

(H
1

) rule out other

‘recursive’ solutions taking the same form as above but for different generalized Schur

decompositions. First, completeness ensures a unique solution to U
21

+ U
22

gX =

0. Further, for any generalized Schur decomposition generated by Cauchy curve �

generating a Riesz projector which projects onto a subspace other than that generated

by � equal to the complex unit circle, one of two issues may occur. One possibility

is that there exists a spectral subspace corresponding to an element of the spectrum

outside of the unit circle, in which case T
11

has an element of its spectrum with

modulus greater than one, and so the sequence {xt}1t=0

defined by x
0

given, xt+1

=

hXxt does not converge to 0 for each value of x
0

, by Gohberg et al. (1990, Theorem

IV.3.1) and so a fortiori is not in `1y0
(H

1

). The other possibility is that no elements of

the spectrum from outside the unit circle are brought inside �, but it shrinks so that

some spectral subspace corresponding to element of the spectrum with modulus less

than one, call it M, is brought outside of �, in which case, U
22

which was an invertible

linear operator from Hy to H
12

must now have range space H
12

�M and the same

domain, so it cannot be invertible. The case where an element of the spectrum has

modulus exactly one is ruled out by assumption. So, only one solution of the posited
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recursive form exists. Next we must show that no solution other than the recursive

one exists.

To show @F1
ds

is injective, simply show that @F1
ds

s = 0 implies s = {y
0

, {xt, yt}1t=1

} =

0. Suppose not. Then, there is some t such that either xt 6= 0 or yt 6= 0. Consider

the first such time t, and suppose that t � 1. Then Fx0xt + Fy0yt = 0 imposes

2

64
S

11

(U
11

xt + U
12

yt) + S
12

(U
21

xt + U
22

yt)

S
22

(U
21

xt + U
22

yt)

3

75 =

2

64
0

0

3

75

. If yt = gXxt, then the second row cancels and xt = 0. Instead, it must be that

(U
21

xt + U
22

yt) 2 Ker(S
22

), where this null space is potentially nontrivial. If S
22

is complete, yt = gXxt, the second row cancels, and xt = yt = 0. If it is not,

there may be some non-zero zt 2 Null(S
22

) such that U
21

xt + U
22

yt = zt, and so

yt = U�1

22

U
21

xt + U�1

22

zt = gXxt + U�1

22

zt, and, plugging this into the first row, obtain

xt = (U
11

+ U
12

gX)

�1

[U
11

U�1

22

+ S�1

11

S
12

]zt, which we write as xt = mZzt and so the

value of xt, yt must be of this form. We may then consider what this implies for

xt+1

, yt+1

. We then have Fxxt + Fyyt + Fx0xt+1

+ Fy0yt+1

= 0 imposes

[

T
11

T
12

0 T
22

]

2

64
((U

11

+ U
12

gX)mZ + U
12

U�1

22

)zt

zt

3

75 = [

S
11

S
12

0 S
22

]

2

64
U

11

xt+1

+ U
12

yt+1

U
21

xt+1

+ U
22

yt+1

3

75 .

Values of (U
21

xt+1

+ U
22

yt+1

) solving the second equation T
22

zt = S
22

(U
21

xt+1

+

U
22

yt+1

) exist so long as the range space of S
22

contains T
22

zt, in which case mul-

tiple solutions exist, given by a minimum norm solution S⇤
22

(S
22

S⇤
22

)

�1T
22

zt plus

some element of the null space of S
22

, which we may call ✏t+1

, and so for some

✏t+1

2 Ker(S
22

) zt+1

= S⇤
22

(S
22

S⇤
22

)

�1T
22

zt + ✏t+1

is a solution, and so we have

yt+1

= gXxt+1

+ U�1

22

zt+1

. We may then solve the first row for xt+1

to obtain

xt+1

= mZzt+1

+(hXmZ +(U
11

+U
12

gX)

�1S�1

11

T
11

U
12

U�1

22

+T
12

)zt. Repeating this pro-
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cess indefinitely, yt+k = gXxt+k +U�1

22

zt+k where zt+k = S⇤
22

(S
22

S⇤
22

)

�1T
22

zt+k�1

+ ✏t+k

for some ✏t+k 2 Ker(S
22

), and xt+k is given by mZzt+k plus terms in zt+i for i from 0

to k�1. We therefore have a sequence which at all t has leading term defined by zt+k,

which satisfies T�1

22

S
22

zt+k = zt+k�1

for all k � 1. By construction of the generalized

Schur decomposition, (T
22

, S
22

) has spectrum strictly bounded outside the unit circle,

and so the series T�1

22

S
22

zt+k = zt+k�1

declines exponentially fast toward zero when

run backwards in time, and so since zt 6= 0, this means that the series must grow expo-

nentially in norm over time. As a result, this conjectured solution is not in `1y0
(H

1

). It

now suffices to rule out the case where the first nonzero element is y
0

. If this is the case,

the first row requires y
1

= gXx
1

+U�1

22

z
1

for z
1

= S⇤
22

(S
22

S⇤
22

)

�1T
22

y
0

+✏
1

, ✏
1

2 Ker(S
22

)

and x
1

= (U
11

+ U
12

gX)

�1

[S�1

11

(T
11

U
12

+ T
12

U
22

)T�1

22

S
22

� S�1

11

S
12

� U
12

U�1

22

]z
1

, and

so we have the same form as before, and so again this results in an explosive series.

So, the kernel of @F1
ds

on `1y0
(H

1

) consists only of 0, and so @F1
ds

has a unique linear

inverse, which is bounded so long as F�1

X is.

Combining these results, the implicit function theorem on Banach spaces applies,

and there exists a neighborhood of x
0

= 0 around which there exists for every x
0

in

this neighborhood a sequence s(x
0

) = {y
0

(x
0

), {xt(x0

), yt(x0

)}1t=1

} such that x
0

, s(x
0

)

satisfy the equilibrium conditions for all t. Further, this function is continuous and

differentiable, with inverse given by �(

@F1
ds

)

�1

@F1
dx0

. To characterize the result of

applying (

@F1
ds

)

�1 to @F1
dx0

= {Fx, 0, 0, 0, . . .}, we may note that M�1

(�Fx) is given by

the values of (y
0

, x
1

) solving Fx + Fyy0

+ Fx0x1

+ Fy0gXx
1

= 0, which, by generalized

Schur decomposability and the invertibility of U
22

, is solved uniquely by the operators

y
0

= gX , x
1

= hX . Applying this and the formula for subsequent values of xt and yt,

we obtain the recursive form @x
k

(x0)

@x0
= hk

X for all k � 1 and @y
k

(x0)

@x0
= gXhk

X for all

k � 0, as claimed.

The above result showed that a local equilibrium exists for all starting values local

to the steady state, and its derivatives follow the given recursive forms. It remains
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to show that the equilibrium itself is recursive. To see this, note that the implicit

function theorem implies that the function s(x
0

) is unique. Further, we have that the

function given by the restriction of F1 to t � 1, F1
t�1

(x
1

, {y
1

, {xt, yt}1t=2

}) = {F (xt +

x⇤, yt+y⇤, xt+1

+x⇤, yt+1

+y⇤, 0)}1t=1

, has the property that the pair solving x
0

, s(x
0

) to

F1
(x

0

, s) = 0 has restriction to t � 1 x
1

(x
0

), {y
1

(x
0

), {xt(x0

), yt(x0

)}1t=2

} which is a

solution to F1
t�1

(x
1

, {y
1

, {xt, yt}1t=2

}) = 0. But since F1
t�1

is identical to F1
= {F (xt+

x⇤, yt+y⇤, xt+1

+x⇤, yt+1

+y⇤, 0)}1t=0

, by the implicit function theorem applied to F1
t�1

,

for any x
1

in a neighborhood of x⇤, there is a unique {ỹ
1

(x
1

), {x̃t(x1

), ỹt(x1

)}1t=2

} such

that F1
t�1

(x
1

, {y
1

(x
1

), {xt(x1

), yt(x1

)}1t=2

}) = 0, and this is unique and equal to s(x
1

).

As a result, for x
1

= x
1

(x
0

), the function x̃
2

(x
1

) for F1
t�1

= 0 must equal both x
2

(x
0

)

and x
1

(x
1

(x
0

)). Since this may be repeated infinitely often, we have that, for x
0

in a

neighborhood of 0, the solution to F1
= 0 satisfies xt(x0

) = x
1

(x
1

(...(x
1

(x
0

)))), i.e.,

the function x
1

applied t times. So, we are justified in defining the function h(x) (on

values of x 2 Hx instead of deviations) as x
1

(x � x⇤) + x⇤, which may be applied

recursively to find xt(x0

). Similarly, by uniqueness and recursion yt(x0

) = y
0

(xt(x0

))

for all t, and so we may define g(x) as y
1

(x � x⇤) + y⇤. So, for any x
0

in N , there

exists a recursion xt+1

= h(xt), yt = g(xt) setting F (xt, yt, xt+1

, yt+1

) = 0 8t � 0,

with the claimed properties.

The claim that this recursion converges back to steady state follows from the fact

that {x
0

, s(x
0

)} 2 `1(H
1

) by construction.

The following minor result, possibly not new, ensures that the paths induced by

products of sequences of linear operators which converge, such as when the chain

rule is applied to find derivatives with respect to initial conditions of an object con-

structed recursively along a convergent sequence, exhibit the stability properties of

their limiting operator. It is used to ensure that the invertibility conditions required

for the implicit function theorem hold even along sequences starting away from the

steady state.
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Lemma .12. Let {Ak}1k=1

be a sequence of operators in L(H! H) uniformly bounded

by C <1 and converging in operator norm to a fixed limit A such that ⌃(A) is strictly

inside the complex unit circle �. Then kQn
k=1

Akk ! 0 as n !1, and furthermore

this convergence is at an exponential rate.

Remark. Under the conditions of the lemma, kAnk ! 0 exponentially by Gohberg

et al. (1990, Thm. IV.3.1), and for k sufficiently large, kAn
kk ! 0 also, so this

should be interpreted as saying that the stability of recursively constructed sequences

is unaffected by changes along the sequence which are eventually negligible. Note

that this statement is trivial also for sequences of normal operators, for which the

operator norm is given by the spectral radius and so kQn
k=1

Akk 
Qn

k=1

kAkk & 0.

Proof. Convergence is given by a ‘blocking’-type argument. While the elements of
Qn

k=1

Ak converge to A, this convergence does not imply that the product of the

element converges to the product of the limit. Instead, the sequence may be separated

into blocks i = 1 . . . m of finite length Ji, which, since a convergent sequence is Cauchy,

each block contains a set of elements of diameter going to 0. Since asymptotically

the spectrum of Ak is strictly inside the unit circle, for large enough i and for long

enough Ji, the ji-fold product of any element within a block has norm bounded away

from 1, and for small enough diameter this is still true for the product over the block

itself. Since the norm of the product is bounded by the product of the norms of the

blocks, each less than 1, it decays exponentially as more blocks are added.

Denote the jth element in block i as Ai
j

. For any set of blocks, obtain kQn
k=1

Akk 
Qm

i=1

kQJ
i

j=1

Ai
j

k. By convergence of Ak in operator norm, their spectra also con-

verge, and so for any small enough ✏ > 0, 9K
1

such that8k > K
1

, sup |⌃(Ak)| <

sup |⌃(Ak)| + ✏ < 1. By Gohberg et al. (1990, Thm. IV.3.1) and uniform bound-

edness of the Ak, this implies that for any � > 0, for k > K
1

, there exists some

J(�) such that kAJ(�)
k k < � uniformly over k. For any block i, kQJ

i

j=1

Ai
j

� AJ
i

i
J

i

k 
CJ

i

�1

PJ
i

�1

i=1

kAi
j

� Ai
J

i

k. Since Ak is a Cauchy sequence, for any ✏
2

> 0 there exists
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K
2

such that for all k
1

, k
2

> K
2

kAk1 � Ak2k < ✏
2

. For some ⇢ < 1 we may choose �,

✏
2

such that for k > max{K
1

(✏), K
2

(�)}, kQJ(�)
j=1

Ak+jk  CJ(�)�1

(J(�)� 1)✏
2

+ � = ⇢.

Let m = b(n�max{K
1

(✏), K
2

(�)})/J(�)c + 1, Ji = J(�) for all i � 2 and J
1

=

n� (m� 1)J(�), i.e., the first max{K
1

(✏), K
2

(�)} elements, plus the remainder of n

after adding the largest feasible integer number of blocks of size J(�) after that. Then

by uniform boundedness and the fact that the remainder contains no more than J(�)

blocks, kQJ1

j=1

A
1jk is bounded by a constant C

2

, and so for n > max{K
1

(✏), K
2

(�)}),
kQn

k=1

Akk  C
2

⇢m�1 which decays to 0 exponentially in m, and so in n as well.

Theorem .5

Proof. Consider the map M(g, h,�)(x) = EF (x, g(x), h(x) + �⌘z0, g(h(x) + �⌘z0),�)

mapping B
1

to W2,1
(N ! H

2

), the space of operators from Hx to H
2

bounded

on N ⇢ Hx with bounded first and second Fréchet derivatives on the same region,

where B
1

is the Cartesian product of W2,1
(N ! Hy), the space of operators from

Hx to Hy bounded and with bounded first and second derivatives on N ⇢ Hx,

W1,1
(N ! Hx), the Banach space of operators from Hx to Hx bounded and with

bounded derivatives on N ⇢ Hx, and [�✏, ✏] ⇢ R. We hope to solve M(g, h,�)(x) =

0 implicitly for g and h as a function of � (where 0 is the operator mapping all

x 2 Hx to 0 2 H
2

). To do this, we must show @
@(g,h)

M(g⇤, h⇤, 0)(x) is invertible,

where g⇤, h⇤ are the deterministic operators found in the previous theorem. To do

this, it is sufficient to show that for every  (x) 2 W2,1
(N ! H

2

), there exists

(unique) �(x) = (�g(x),�h(x)) 2 W2,1
(N ! Hy) ⇥ W2,1

(N ! Hx) such that
@

@(g,h)

M(g⇤, h⇤, 0)(x)[(�g(x),�h(x))] =  (x). Applying the definition of M, noting

that at � = 0 F is deterministic and so the expectation disappears, and rearranging,

202



obtain

Fy(x, g⇤(x), h⇤(x), g⇤(h⇤(x)))[�g(x)] + Fx0(x, g⇤(x), h⇤(x), g⇤(h⇤(x)))[�h(x)] +

=  (x)� Fy0(x, g⇤(x), h⇤(x), g⇤(h⇤(x)))

@

@x
g⇤(h⇤(x))[�h(h

⇤
(x))]

�Fy0(x, g⇤(x), h⇤(x), g⇤(h⇤(x)))[�g(h
⇤
(x))] (12)

To simplify notation, we write this as G
1

(x)�(x) =  (x) � G
2

(x)�(h⇤(x)). At

x = x⇤, this reduces to Fy[�g(x⇤)]+Fx0 [�h(x⇤)] =  (x⇤)�Fy0 [�g(x⇤)]�Fy0gX [�h(x⇤)], or

G
1

(x⇤)�(x⇤) =  (x⇤)�G
2

(x⇤)�(x⇤). By assumption, G
1

(x⇤) = [Fy, Fx0 ] is invertible,

and so this equals �(x⇤) + G�1

1

(x⇤)G
2

(x⇤)�(x⇤) = G�1

1

(x⇤) (x⇤). This has a unique

solution if and only if �1 2 ⇢(G�1

1

(x⇤)G
2

(x⇤)) so I + G�1

1

(x⇤)G
2

(x⇤) is invertible,

which holds because we assume that ⌃(G�1

1

(x⇤)G
2

(x⇤)) is inside the complex unit

circle. Note that this is stronger than necessary for a unique solution at x⇤. However,

away from x⇤, the system becomes no longer time reversible, and components of the

spectrum outside the unit circle correspond to iterating x backward in time along

h⇤(x). As h⇤(x) generally has unbounded or even nonexistent inverse, these do not

generate bounded solutions for �(x) away from x⇤.

We next seek the value of �(x) away from x⇤ by using continuity and solving

forward. Since G�1

1

(x⇤) is assumed bounded and G
2

(x⇤) is bounded since Fy0 and gX

are, the resolvent set of G�1

1

(x⇤)G
2

(x⇤) is open. By continuity of the derivatives of F

and g⇤ with respect to x we therefore have that there is a neighborhood of x⇤ on which

G�1

1

(x)G
2

(x) is bounded and, by continuity of the spectrum of bounded operators,

has spectrum inside the unit circle. If so desired, we may restrict this neighborhood

so that the spectrum is bounded away from the unit circle. Since h⇤(x) is stable and

continuous in a neighborhood of x⇤, there exists a neighborhood U
0

contained in the

above neighborhood and N such that h⇤(x) 2 U
0

8x 2 U
0

. As a result, for any x 2 U
0

,

�(x) = G�1

1

(x) (x)�G�1

1

(x)G
2

(x)�(h⇤(x)), and we may iterate this forward to obtain
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�(h⇤(x)) = G�1

1

(h⇤(x)) (h⇤(x)) � G�1

1

(h⇤(x))G
2

(h⇤(x))�(h⇤(h⇤(x))) and continue to

iterate to find an expression for �(x) in terms of an infinite series. Formally we have

�(x) =

1X

k=0

�k (xk)

where xk and �k are defined recursively by x
0

= x, xk+1

= h⇤(xk), �1

= G�1

1

(x
0

)

�k = ��k�1

G
2

(xk�1

)G�1

1

(xk). Since  2W1,1
(N ! H

2

),  (xk) is uniformly bounded

by a constant on U . By stability kxk � x⇤k ! 0, and by continuity of G�1

1

(x)G
2

(x),

G�1

1

(xk)G2

(xk)! G�1

1

(x⇤)G
2

(x⇤) with spectrum bounded away from the unit circle,

the operator norm of �k must eventually decline exponentially by .12. As a result,

the series converges in H
2

-norm. Further, since this boundedness is true for all x, and

the uniform boundedness over x implies that the bound in.12 can likewise be made

uniform over x, sup

x2U
k�(x)kH2 <1, and thus �(.) is bounded on U

0

.

To show that �(.) 2 W2,1
(U ! H

2

), we must first show that its first derivatives

are bounded on some set. To see this, first note that  (x) 2W2,1
(N ! H

2

) and so

has uniformly bounded derivatives on U
0

. Next, note that, by assumption, the deriva-

tives of F with respect to x, y, x0 and y0 themselves have uniformly bounded deriva-

tives, and, by the previous theorem extended to apply the implicit function theorem to

an operator which is twice continuously differentiable, h⇤ and g⇤ are themselves twice

continuously differentiable and so have uniformly bounded derivatives on a neigh-

borhood of x⇤. As a result, G�1

1

(x) and G
2

(x) have derivatives which are uniformly

bounded in a neighborhood of x⇤. By the stability of h⇤ on U
0

and the uniform bound-

edness of its derivatives, writing d
dx

xk(x) =

Qk
i=1

d
dx

h⇤(h⇤k�i
(x)) by the chain rule,

and noting that h⇤k�i
(x)! x⇤ and so by continuity d

dx
h⇤(h⇤k�i

(x))! hX , which has

spectrum inside the unit circle by assumption, Lemma .12 applies and k d
dx

xk(x)k ! 0

exponentially. Denote the set over which all of these properties hold as U . Applying

the product rule, obtain d
dx
�(x) =

P1
k=0

((

d
dx
�k) (xk) + �k

d
dx
 (xk)). The sum over

the second term converges uniformly in x by the convergence of �k and the fact that
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d
dx
 (x) is uniformly bounded. By .12, products of j instances of G�1

1

(x)G
2

(x) eval-

uated at different points are eventually bounded by �j for a constant � < 1. By the

decay of the derivative of xk to 0, and the uniform boundedness of G�1

1

, G
2

and their

derivatives, for k larger than ¯k, k d
dx

[G�1

1

(xk)G2

(xk)]k  � also. Applying the product

rule to the recursive formulation of �k, the first term of the derivative is bounded by a

constant times sup

x2U
k (x)kH2 times

P1
k=0

(

P
¯k
i=0

k d
dx

[G�1

1

(x)G
2

(x)]ki�i�¯k
+

Pk
i=¯k+1

�i
).

The first part is bounded by a constant times a convergent geometric series, the sec-

ond is bounded by a constant times
P1

k=0

k�i which is also a convergent series. As a

result, the series converges uniformly over x 2 U , and so d
dx
�(.) is bounded.

To show boundedness of second derivatives, essentially similar procedures can

be followed. By the product rule, d2

dx2�(x) =

P1
k=0

((

d2

dx2�k) (xk) + �k
d2

dx2 (xk) +

2(

d
dx
�k)

d
dx
 (xk)). Since d

dx
 (x) is uniformly bounded, the summation of the last term

is bounded on an appropriate neighborhood by the exact procedures used to show
P1

k=0

(

d
dx
�k) (xk) is bounded, and the second is bounded by the assumption that

 (x) 2 W2,1
(N ! H

2

) and so has uniformly bounded second derivatives. To show

the first part, we must control the second derivatives of the recursive construction of

�k. First note that for k large enough, k d2

dx2 xk(x)kL(U!L(U!H
x

))

! 0 exponentially.

To see this, note

d2

dx2

xk(x)[a][b] =

d

dx
[

kY

i=1

d

dx
h⇤(h⇤k�i

(x))[a]][b]

=

kX

j=1

j�1Y

i=1

d

dx
h⇤(h⇤k�i

(x)) · d2

dx2

h⇤(h⇤k�j
(x))[

kY

i=j+1

d

dx
h⇤(h⇤k�i

(x))[a]][b]

By the uniform boundedness of d2

dx2 h⇤() in a neighborhood of x⇤ which applies by

the implicit function theorem used to construct it extended to apply to a three times

continuously differentiable operator and by the convergence of iterated first derivatives

by the construction of the blocks in .12, this is bounded in operator norm by k
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times an exponentially decaying quantity in k, and so itself is exponentially decaying.

Similarly, by three times continuous differentiability of F , the second derivatives of

G�1

1

and G
2

are also uniformly bounded on a neighborhood of x⇤, and so using the

exponential convergence of d
dx

xk(x) and d2

dx2 xk(x), the product rule and the chain rule,

k d2

dx2 [G
�1

1

(xk)G2

(xk)]k ! 0 exponentially also. So, by the product rule again, d2

dx2�k is

the sum of k exponentially decaying components and so also declines exponentially in

k in operator norm. Uniform boundedness of k k(.)k and the continuity of the second

derivative of �k then imply the convergence of the geometric sum
P1

k=0

((

d2

dx2�k) (xk)

uniformly over x in a neighborhood of x⇤. As a result, d2

dx2�(x) is bounded and so

�(.) 2W2,1
(U ! H

2

).

So, restricting all operators on N to U , we see that @
@(g,h)

M(g⇤, h⇤, 0)(x) has a

bounded inverse on W2,1
(U ! H

2

).

Continuity of M(g, h,�)(x) and continuity of @
@(g,h)

M(g, h,�)(x) with respect to

g, h, and � in a neighborhood of g⇤, h⇤, 0 are guaranteed by the bounded support

condition on z, continuous differentiability of EF with respect to its arguments and

by the twice continuous differentiability of g, which holds at g⇤ as a corollary of the

implicit function theorem used to construct it, extended to three times continuously

differentiable F and locally in a neighborhood of g⇤ since we consider only operators

in W2,1
(U ! Hy). To see the importance of the bounded support condition, note

that � enters g(h(x)+�⌘z0) and so to ensure that x0 2 U for all x 2 U , it is sufficient,

since h(x) 2 U and U is open, there exists a radius ✏s such that k�⌘z0k < ✏s, which is

true if kz0k < 1 for � sufficiently small. As g(x) and gx(x), into which x0 enters in
@

@(g,h)

M(g, h,�)(x), are guaranteed to be bounded and continuous only over a set U ,

allowing z0 to take unbounded support would result in the possibility of unbounded

changes for small changes in � if no further conditions were imposed on g and gx and

so could violate continuity. Combining the above conditions, the implicit function

theorem in Banach space implies that there exists a neighborhood (�✏, ✏) of � around
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0 in which there exist continuous, differentiable functions g(.,�), h(.�) from (�✏, ✏)!
W2,1

(U ! Hy)⇥W2,1
(U ! Hx) satisfying M(g(.�), h(.,�),�)(x) = 0.
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Appendix C: Proofs of Propositions

in Main Text

Chapter 1 Proofs

Section 1.2 Proof

Proof. of (1.1). Suppose h(x, z) := h(x, �) + �z is a measurable function from (Bx ⇥
Bz, ⌃x ⌦ ⌃z), the product space of Bx ⇥ Bz equipped with a product sigma field,

to (Bx, ⌃x). We want conditions on the space, the function, and the sigma fields

such that it induces a measurable stochastic process on the product space of Bx.

We may assume z is drawn independently of x according to measure µz on (Bz, ⌃z),

and may ask for the initial distribution of x to be given by µx. For each x, we can

define the pushforward measure on (Bx, ⌃x) by µx0
x (f(x0)) := µz

(f(h(x, �) + �z) for

any f 2M+

(Bx, ⌃x, ¯R, B(

¯R)) nonnegative measurable functions from x to the real

line equipped with the Borel sigma field. If the family (µx0
x )x of measures satisfies

x ! µx0
x (A) is a measurable function from (Bx, ⌃x) ! (

¯R, B(

¯R)) for any A 2 ⌃x,

then this is a probability kernel and by, e.g, the Ionescu Tulcea extension theorem,

the family induces a measurable stochastic process for xt on the countable product

space ⌦1t=1

(Bx, ⌃x).

To show measurability of the family of measures (µx0
x )x, consider a �-class argu-

ment. The measure µz maps the class of measurable rectangles {x 2 A1, z 2 A2}
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for A1 2 ⌃x, A2 2 ⌃z to (nonnegative multiples of) indicators of sets ⌃x, which

are therefore measurable. The class of measurable rectangles generates the prod-

uct sigma field ⌃x ⌦ ⌃z and is stable under pairwise intersections. The class of

bounded nonnegative functions f(x, z) 2M+

(Bx ⇥ Bz, ⌃x ⌦ ⌃z, ¯R, B(

¯R)) such that

µzf(x, z) is (Bx, ⌃x) measurable can be shown to form a �-cone (Pollard, 2002, 2.11

Def. <43>) and so by these facts (Pollard, 2002, 2.11 Lemma <44>), µz maps

M+

(Bx ⇥ Bz, ⌃x ⌦ ⌃z, ¯R, B(

¯R)) to M+

(Bx, ⌃x, ¯R, B(

¯R)). In particular, let h(x, z)

be Bx ⇥ Bz, ⌃x ⌦⌃z ! Bx, ⌃x measurable, then µz
(f(h(x, z)) is (Bx, ⌃x) measurable

for any f 2M+

(Bx, ⌃x, ¯R, B(

¯R)) and in particular, x! µx0
x (A) is a measurable func-

tion from (Bx, ⌃x) ! (

¯R, B(

¯R)) for any A 2 ⌃x. As a result, (µx0
x )x is a probability

kernel.

To construct a measurable stochastic process, consider the i.i.d. sequence {zt}1t=0

such that zt each have identical marginal measure µz
t and, beginning with initial

measure µx, construct the sequence of probability kernels on ⌦1t=1

(Bx, ⌃x) by iter-

ating the identical kernels defined by µx0
xt(f(x0)) := µz

t (f(h(x, z)). This generates a

sequence x
0

⇠ µx
0

, xt = h(xt�1

, zt). By the Ionescu Tulcea extension theorem, the

sequence of kernels induces a measurable stochastic process on the countable prod-

uct space ⌦1t=1

(Bx, ⌃x) with finite-dimensional distributions generated by the iterated

probability kernels. Note that the only assumptions made on (Bx, ⌃x), (Bz, ⌃z) and

h(x, z) are that h(x, z) is jointly measurable from the product sigma field over x and

z to the sigma field over x. In particular, because the probability kernel was con-

structed explicitly, no topological assumptions needed to be made on the spaces or

sigma fields, as are usually required to invoke the Kolmogorov extension theorem.

This permits, among other constructions, the use of nonseparable function spaces or

non-Borel sigma fields, which may alleviate some difficulties when working in infinite-

dimensional space.

By measurability of g(x, �) and F , the measurability of the probability ker-
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nels defining the conditional distribution of the random variables yt = g(xt,�) and

F (xt, g(xt,�), h(xt,�) + �zt+1

, g(h(xt,�) + �zt+1

,�) given x and from there the cor-

responding stochastic processes can be established in an analogous fashion, ensur-

ing that (xt, yt) is product measurable and EF (x, g(x, �), h(x, �) + �⌘z0, g(h(x, �) +

�⌘z0,�),�) coincides with the conditional expectation of F (xt, g(xt,�), h(xt,�) +

�⌘zt+1

, g(h(xt,�) + �⌘zt+1

,�),�) at time t given xt = x, as claimed.

Section 1.4 Proofs

Proof. Of Theorem (1.1). The proof proceeds in two steps: first, showing that the

generalized Schur decomposition is continuous with respect to the approximation, and

then showing the policy operators are continuous in the generalized Schur decompo-

sition.

First, note that

k( ˜BK , ˜AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B, A)kB 

k( ˜BK , ˜AK
)� (BK , AK

)kB + k(BK , AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
)� (B, A)kB =

k( ˜BK , ˜AK
)� (BK , AK

)kB+

k(I�⇡K
)(BI , AI)(I�⇡K

)�(I�⇡K
)(B, A)(I�⇡K

)�(I�⇡K
)(B, A)⇡K�⇡K

(B, A)(I�⇡K
)kB =

k( ˜BK , ˜AK
)� (BK , AK

)kB+

k � (I � ⇡K
)(BC , AC)(I � ⇡K

)� (I � ⇡K
)(BC , AC)⇡K � ⇡K

(BC , AC)(I � ⇡K
)kB

= k( ˜BK , ˜AK
)� (BK , AK

)kB + k⇡K
(BC , AC)⇡K � (BC , AC)kB  ⇣K + ⌘K

where the third expression follows from the decomposition of (B, A) = (BI , AI) +

(BC,, AC), and the construction of ⇡K so that (I�⇡K
)(BI , AI)⇡K

= 0 and ⇡K
(BI , AI)(I�

⇡K
) = 0.
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The consistency of the approximation of (B, A) implies consistency of the compo-

nents of the Schur decomposition by (.2) and (.3) and the bound on dif(B, A). Note

that the generalized Schur decomposition of (

˜BK , ˜AK
) separately is equivalent to (one

ordering of) the generalized Schur decomposition of their sum. More precisely,

2

64
˜Q⇤K

1

0 , ˜Q⇤K
2

0

0 Q⇤I
1

0 Q⇤I
2

3

75

2

66666664

˜TK
11

0

˜TK
12

0

0 T I
11

0 T I
12

0 0

˜TK
22

0

0 0 0 T I
22

,

˜SK
11

0

˜SK
12

0

0 SI
11

0 SI
12

0 0

˜SK
22

0

0 0 0 SI
22

3

77777775

⇤

2

66666664

˜UK
11

0

˜UK
12

0

0 U I
11

0 U I
12

˜UK
21

0

˜UK
22

0

0 U I
21

0 U I
22

3

77777775

where an I superscript indicates a component corresponding to the Schur decomposi-

tion on Ker ⇡K of (BI , AI
), is a generalized Schur decomposition of (

˜BK , ˜AK
) + (I �

⇡K
)(BI , AI)(I � ⇡K

) corresponding to curve �. Note that by operator norm conver-

gence, for sufficiently large K, �
min

(� ˜BK � ˜AK
+ (I � ⇡K

)(�BI�, AI)(I � ⇡K
)) �

�
min

(�B � A) � 2(⇣K + ⌘K) > 0 uniformly in � 2 � by Weyl’s inequality and the

compactness of � and so (

˜BK , ˜AK
) + (I � ⇡K

)(BI , AI)(I � ⇡K
) is �-regular and so

the generalized Schur decomposition described exists.

To bound kgK � gXk, note

gK = �(

˜UK
22

)

�1

˜U
21

�(U I
22

)

�1U I
21

= �

0

B@
˜UK

22

0

0 U I
22

1

CA

�1

0

B@
˜UK

21

0

0 U I
21

1

CA = �(

˜U
22

)

�1

˜U
21

.
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By (.2),

k ˜U
1

� U
1

k  kU
1

kkI � (I + P ⇤P )

� 1
2k+ kPk

���U
2

(I + P ⇤P )

� 1
2

���

 CkPk+ o(kPk)  C
2(⇣K + ⌘K)

�

for some constant C < 2 + ✏ for any ✏, for K sufficiently large, where � > 0 by the

assumption that dif(B,A)>0. As a result, by invertibility of U
22

, Weyl’s inequality,

and the triangle inequality,
���� ˜U�1

22

˜U
21

+ U�1

22

U
21

���  C 2(⇣
K

+⌘
K

)

�
for some constant C

for K large enough.

Similarly, we have

hK =

0

B@

0

B@
˜UK

11

0

0 U I
11

1

CA�

0

B@
˜UK

12

0

0 U I
12

1

CA

0

B@
˜UK

22

0

0 U I
22

1

CA

�1

0

B@
˜UK

21

0

0 U I
21

1

CA

1

CA

�1

⇤

0

B@
˜SK
11

0

0 SI
11

1

CA

�1

0

B@
˜TK
11

0

0 T I
11

1

CA ⇤

0

B@

0

B@
˜UK

11

0

0 U I
11

1

CA�

0

B@
˜UK

12

0

0 U I
12

1

CA

0

B@
˜UK

22

0

0 U I
22

1

CA

�1

0

B@
˜UK

21

0

0 U I
21

1

CA

1

CA

= (

˜U
11

+

˜U
12

gK)

�1

(

˜S
11

)

�1

˜T
11

(

˜U
11

+

˜U
12

gK)

Applying the triangle inequality, (.2), (.3), and convergence of gK , this implies that

for some constant C, for K large enough, khK � hxkop  C ⇣
K

+⌘
K

�
, as claimed.

A demonstration that for appropriately smooth functions wavelet representations

provide the necessary error control to ensure consistency follows from some standard

estimates regarding wavelet coefficients.

Proof. of Theorem (1.2). First we demonstrate bounds on ⌘K , the error induced by

truncating to a K term wavelet series, using results on wavelet coefficients and oper-

212



ator norm bounds from Johnstone (2013), then bounds on ⇣K , the error induced by

calculating the inner products with the wavelet basis by quadrature using quadrature

error estimates from Beylkin et al. (1991).

First, denoting the blocks of (BC , AC) as Kr,ij, max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
} 

Jmax

r,i,j

��KK
r,ij �Kr,ij

��
op

by definition of operator norm. Because an orthonormal basis

is used, ⇡K
(BI , AI)⇡K is simply expressed in terms of identity matrices on this space,

and so can be evaluated exactly.

The projection of Kr,ij onto the space of the first Ki⇥Kj wavelet coefficients can

be expressed using the inner product with the tensor product over the first Ki ⇥Kj

orthonormal basis functions {�k}K
i

k=1

and {�k}K
j

k=1

as

⇡K
iKr,ij⇡

K
j

[f(y)] =

K
jX

k=1

K
iX

l=1

hKr,ij(x, y),�k(x)�l(y)i h�k(y), [f(y)]i�l(x)

=

´
ˆKr,ij(x, y)f(y)dy where ˆKr,ij(x, y) =

PK
j

k=1

PK
i

l=1

hKr,ij(x, y),�k(x)�l(y)i�k(y)�l(x)

is the Ki⇥Kj term projection of the kernel of the integral operator onto the wavelet

basis. Since Kr,ij(x, y) 2 ⇤

↵
r,ij

([0, 1]

d
i ⇥ [0, 1]

d
j

) and �k are a standard wavelet basis,

we can use norm bounds to control the error in this projection. Sup norm bounds

available in Chen & Christensen (2015), show that under the ↵r,ij�Hölder assump-

tion,
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]

d

i⇥[0,1]

d

j

)

= O((KiKj)
�↵

r,ij

/(d
i

+d
j

)

)

when wavelets satisfying (1.4.3) are used. In particular, adapting the proof of their

Lemma 2.4, letting

`K
i

K
j

= sup

f2L1([0,1]

d

i⇥[0,1]

d

j

)

������

K
jX

k=1

K
iX

l=1

hf(x, y),�k(x)�l(y)i�k(y)�l(x)

������
L1

/ kf(x, y)kL1

be the Lebesgue constant for the tensor product wavelet basis
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��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]

d

i⇥[0,1]

d

j

)

 (1 + `K
i

K
j

)O((KiKj)
�↵

r,ij

/(d
i

+d
j

)

),

and by their Theorem 5.1 applied in the case of uniform density, `K
i

K
j

is bounded

uniformly in Ki and Kj.

By compactness of the domain, we have

ˆ ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dx  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]

d

i⇥[0,1]

d

j

)ˆ ��� ˆKr,ij(x, y)�Kr,ij(x, y)

��� dy  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]

d

i⇥[0,1]

d

j

)

almost surely, so by Young’s inequality (Johnstone, 2013, Theorem C.26)

sup

kfk=1

����
ˆ

(

ˆKr,ij(x, y)�Kr,ij(x, y))f(y)dy

����  C
��� ˆKr,ij(x, y)�Kr,ij(x, y)

���
L1([0,1]

d

i⇥[0,1]

d

j

)

 O((KiKj)
�↵

r,ij

/(d
i

+d
j

)

)

As this holds for each r, i, j, we have

⌘K = max{��BK
C �BC

��
op

,
��AK

C � AC

��
op
}  O(Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)

)

as claimed, by bounding the operator norm by the Frobenius norm of the J⇥J matrix

with i, j element equal to the operator norm of the i, j block.

To use this result to bound the number of basis functions needed to obtain a total

operator norm error of order ✏, letting ↵̄ = min

r,ij

2↵
r,ij

d
i

+d
j

, by setting {Kj}J
j=1

all equal and

proportional to (

J
✏
)

1
↵̄ , obtain Jmax

r,i,j
(KiKj)

�↵
r,ij

/(d
i

+d
j

)

= O(✏). This results in a basis

of size K =

PJ
j=1

Kj proportional to J(

J
✏
)

1
↵̄ as claimed.

Next, bound ⇣K , the error induced by approximating each integral operator in

(BC , AC) by a matrix with entries given by the discrete wavelet transform of Kr,ij(xs, yt).
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For convenience, define the level of the dj�tensor product of multiresolution analyses

of Im ⇡K
j in each dimension as {njp}d

j

p=1

, and let the total number of basis functions

in the tensor product basis satisfy Kj = ⇧

d
j

p=1

2

n
jp .10 The discrete wavelet transform

in one dimension is a unitary mapping on the space spanned by the scaling func-

tions �n
j

,s := 2

�n
j

/2�(2

�n
jx � s + 1) at multiresolution level nj from vectors whose

entries are inner products with these scaling functions to vectors whose entries are

inner products with the orthonormal wavelet basis spanning the same space, and in

multiple dimensions it maps the tensor product of scaling functions representation to

the tensor product of wavelets representation. As the operator norm is unitarily in-

variant, it therefore suffices to bound the operator norm error in terms of the error in

the representation defined in terms of scaling function coefficients. By the compact

support, vanishing moment condition, and Hölder exponent bound, Beylkin et al.

(1991) show by a Taylor expansion argument that if a scaling function with the prop-

erty
´
�(x + ⌧)xmdx = 0 for all integers m  ↵+ 1, for some integer ⌧ , is used, then

any f(x) 2 ⇤

↵
[0, 1] satisfies 2

�n/2f(2

�n
(k � 1 + ⌧)) =

´
f(x)�n,k(x)dx + O(2

�n(↵+

1
2 )

)

uniformly in k, and for multivariate functions f(x1, . . . , xd
) 2 ⇤

↵
[0, 1]

d, a straightfor-

ward extension shows

(2

�n1/2 . . . 2�n
d

/2

)f(2

�n
(k

1

� 1 + ⌧), . . . , 2�n
(kd � 1 + ⌧)) =

ˆ
. . .

ˆ
f(x

1

, . . . , xd)�n,k1
(x

1

) . . .�n,kd(xd)dx
1

. . . dxd + O(

dY

p=1

2

�n
p

/2

dX

p=1

2

�↵n
p

)

10One can avoid restricting to powers of 2 by using a larger number of functions at the finest level,
at the cost of more cumbersome notation. The order of all asymptotic results remains the same.
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Applying this to 1p
K

i

K
j

Kr,ij(xs, yt) we see that its entries satisfy

�����
1p

KiKj

Kr,ij(xs, yt)�
D
Kr,ij(x, y), ⇧d

i

p=1

�n
ip

,s+⌧ (xp)⇧
d

j

p=1

�n
jp

,t+⌧ (yp)

E�����

= O((

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2

)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

uniformly in s, t. To control the operator norm error induced by this approxima-

tion to the matrix of scaling function coefficients, we again use Young’s inequality,

combined with the fact that the scaling functions �n
j

,s are rescaled translations of

a single bounded and compactly supported function over a regular grid, to bound

the operator norm error in the quadrature approximation of the finite projection

of Kr,ij(x, y) onto a finite tensor product wavelet basis. In particular, denoting

✓ijst :=

D
Kr,ij(x, y), ⇧d

i

p=1

�n
ip

,s+⌧ (xp)⇧
d

j

p=1

�n
jp

,t+⌧ (yp)

E
and ˆ✓ijst :=

1p
K

i

K
j

Kr,ij(xs, yt)

the L1 norm error induced by quadrature in the Ki ⇥Kj term representation of the

kernel is equal to

sup

x,y2[0,1]

d

i⇥[0,1]

d

j

������

K
iX

s=1

K
jX

t=1

(✓ijst � ˆ✓ijst)⇧
d

i

p=1

�n
ip

,s+⌧ (xp)⇧
d

j

p=1

�n
jp

,t+⌧ (yp)

������

As noted in Chen & Christensen (2015, Section 6), by the assumption that the one-

dimensional scaling function � has support within a compact interval, with length no

greater than 3N + 1 for a fixed integer N (depending order of the wavelet used), at

most 3N +1 scaling functions at any fixed level nj may overlap on any set of positive

Lebesgue measure, and so over the di +dj-dimensional tensor product space, no point
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x, y is covered by more than (3N + 1)

d
i

+d
j scaling functions.11 As a result

sup

x,y2[0,1]

d

i⇥[0,1]

d

j

������

K
iX

s=1

K
jX

t=1

(

ˆ✓ijst � ✓ijst)

d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N + 1)

d
i

+d
j

max

s,t

���ˆ✓ijst � ✓ijst

��� sup

x,y

������

d
iY

p=1

�n
ip

,s+⌧ (xp)

d
jY

p=1

�n
jp

,t+⌧ (yp)

������

 (3N + 1)

d
i

+d
jO(

d
iY

p=1

2

�n
ip

/2

d
jY

p=1

2

�n
jp

/2

)(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))⇤

d
iY

p=1

2

n
ip

/2

d
jY

p=1

2

n
jp

/2

sup

x
|�(x)|

= O((3N + 1)

d
i

+d
j

(

d
iX

p=1

2

�n
ip

↵
r,ij

+

d
jX

p=1

2

�n
jp

↵
r,ij

))

by boundedness and the definition of �n
jp

,s. When the number of basis functions used

in each dimension is identical for all dimensions p = 1 . . . di and 1 . . . dj, this term is

bounded by

O((3N + 1)

d
i

+d
j

(di + dj)(KiKj)
�↵

r,ij

/(d
i

+d
j

)

)

This is the same order as the projection result, except for a multiplicative constant

depending on dimension. Let ¯d = max

j
2dj. Then, if the number of basis functions is

set so that {Kj}J
j=1

all equal and proportional to (

(3N+1)

d̄

¯dJ
✏

)

1
↵̄ , the above bound along

with Young’s inequality gives an operator norm error bound bound for each block no

greater than O(

✏
J
). With each of J2 blocks bounded by no more than this quantity,

obtain the bound

⇣K  O(✏)

11The vanishing moments property characterizing Coiflets also requires that the length of the
filter defining the scaling function be longer by a factor of 1.5 than the filter for the corresponding
standard Daubechies wavelet. This results in an larger constant in front of the quadrature error and
the running time of the discrete wavelet transform, but does not affect the rate of convergence.
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exactly as claimed.

Chapter 2 Proofs

Section 2.2 Results

We apply the implicit function theorem to calculate d!
d�

. Taking derivatives of equa-

tions (2.3),(2.4), (2.5), and (2.6) evaluated at the steady state, obtain

dY

d�
= µw̄(x)[.]

dY

dw
= µ¯�(x)[.]

dT

d�
= [c̃]

1
1��

1

1� �
ˆ

G

¯�(z)w̄(z)

1��e⌧̃(1��)⌧(x,z)dz

� �

1��

ˆ
G

[.]w̄(z)

1��e⌧̃(1��)⌧(x,z)dz

dT

dw
= [c̃]

1
1��

1

1� �
ˆ

G

¯�(z)w̄(z)

1��e⌧̃(1��)⌧(x,z)dz

� �

1��

(1� �)

ˆ
G

[.]¯�(z)w̄(z)

��e⌧̃(1��)⌧(x,z)dz

dw

dY
= [c̃]

1
�

1

�

ˆ
G

¯Y (z)

¯T (z)

��1e�⌧̃(��1)⌧(x,z)dz

� 1��

�

ˆ
G

[.] ¯T (z)

��1e�⌧̃(��1)⌧(x,z)dz

dw

dT
= [c̃]

1
�

1

�

ˆ
G

¯Y (z)

¯T (z)

��1e�⌧̃(��1)⌧(x,z)dz

� 1��

�

(� � 1)

ˆ
G

[.] ¯Y (z)

¯T (z)

��2e�⌧̃(��1)⌧(x,z)dz

d!

dw
=

¯T (x)

�µ
[.]

d!

dT
= �µ ¯T (x)

�µ�1w̄(z)[.]

By the chain rule, we can express the derivative of the real wage with respect to

the population distribution as

d!

d�
=

d!

dw

dw

d�
+

d!

dT
(

dT

dw

dw

d�
+

dT

d�
) (13)

where by the implicit function theorem in Banach space and the chain rule repeatedly
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applied,
dw

d�
= (I � dw

dY

dY

dw
� dw

dT

dT

dw
)

�1

(

dw

dY

dY

d�
+

dw

dT

dT

d�
).

Section 2.3 Proofs

Proposition. Derivation of ˆd!
d� �

: ˆd!
d� �

= (1 � µH(�))

µH(�)�H(�)

2

��µH(�)�(��1)H(�)

2 +

µ
��1

H(�),

with H(�) :=

(��1)

2

(��1)

2
+⌧�2�2

Proof. d!
d�

is shown by Equation (13) to equal, in the uniform steady state case,
dw
d�
�µ(

dT
dw

dw
d�

+

dT
d�

) which is a composition of convolution operators and their inverses

and so can also be expressed as multiplication by the Fourier transform of some

function. To construct the Fourier transform of the function, simplify the integrals

in equations (2.3),(2.4), (2.5), and (2.6) and denote

H(�) =

(� � 1)

2

(� � 1)

2

+ ⌧�2�2

the Fourier transform of the Laplace distribution in the convolution operator

⌧(1� �)

2

ˆ
G

[.]e⌧(1��)|x�z|dz.

This yields the formulas ˆdw
dT

=

��1

�
H, ˆdw

dY
=

1

�
H, ˆdT

d�
=

1

1��
H, dT

dw
= H. Substituting

into the expressions for partial derivatives, obtain ˆdw
d�

=

�µ

�

H+

1
�

H2

1�µ

�

H���1
�

H2 and

ˆd!

d� �
= (1� µH(�))

µH(�)�H(�)

2

� � µH(�)� (� � 1)H(�)

2

+

µ

� � 1

H(�). (14)

This is almost the same as Krugman (1996)’s equation (A.44) for this term, but differs

slightly due to what appears to be an algebra error in the text.

Proof. of (2.1). The proof applies the machinery and notation of Stewart (1973).

While rates of convergence are obtained, no attempt is made to ensure that these are
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optimal. First, note that �� = k(B�, A�)� (Bi
I , A

i
I)kF ! 0 by assumption, and so

all submatrices also converge at least as rapidly in Frobenius norm. Next note that

(Bi
I , A

i
I) has generalized Schur decomposition

0

B@Q⇤1

2

64
S1

11

S1
22

0 S1
22

3

75

2

64
U1

11

U1
12

U1
21

U1
22

3

75 , Q⇤1

2

64
T1

11

T1
22

0 T1
22

3

75

2

64
U1

11

U1
12

U1
21

U1
22

3

75

1

CA

where (S1, T1) =

0

BBBB@

2

66664

1 0 0

0

p
2 0

0 0 0

3

77775
,

2

66664

0 0 0

0 0 1/
p

2

0 0 1/
p

2

3

77775

1

CCCCA
and U1

=

0

BBBB@

�1 0 0

0 �1 0

0 0 1

1

CCCCA
.

Applying standard formulas for policy functions, obtain ĝ1 = �U1�
22

U1
21

= (0, 0)

and

ˆh1 = (I
2

+ ĝ⇤1ĝ1)

�1

((

I
2

ĝ1
)

⇤U1⇤
1

S1�1

11

T1
11

U1
1

(

I
2

ĝ1
)) =

0

B@
0 0

0 0

1

CA

As generalized eigenvalues corresponding to the stable subspace are equal to 0 and

the generalized eigenvalue corresponding to the unstable subspace is 1, the measure

of subspace separation defined in Stewart (1973), which ensures that Schur subspaces

are numerically stable, is given by � = dif(S1
11

, T1
11

, S1
22

, T1
22

) > 0. As a result, by

Stewart (1973), Theorem 5.7 and 5.3,
���sin ⇥(U1⇤

1

, U�⇤
1

)

���
F
 2

�
�

��2�
�

for �� small

enough, and similarly for U1
2

, where ⇥(U1⇤
1

, U�⇤
1

) is the matrix of principal angles

between the span of U1⇤
1

and U�⇤
1

. While this does not imply that
���U1⇤

1

� U�⇤
1

���
F
!

0, as the span does not uniquely define the basis, it does imply, because U�⇤
2

and U1⇤
2

have a one-dimensional span and norm 1, that

���U�⇤
2

� U1⇤
2

���
2

F
= 2� 2

���cos ⇥(U�⇤
2

, U1⇤
2

)

���

= 2� 2

q
1� sin

2

⇥(U�⇤
2

, U1⇤
2

)

 2� 2

s

1� (

2��

� � 2��

)

2

= O(��)! 0.
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Since U1
22

= 1 is invertible, the policy function ĝ� = �U��
22

U�
21

therefore satisfies the

bound kĝ� � ĝ1k2F  O(��)! 0 , as claimed.

Further, it is possible to show that for each �, there exists a unitary (2 ⇥ 2)

transformation R� of U1⇤
1

such that
���U1⇤

1

R� � U�
1

���
F
! 0. Applying the definition

of principal angles, for each � there exist unitary matrices R1

� = [R1

�1

, R1

�2

] and

R2

� = [R2

�1

, R2

�2

] such that

[cos ⇥(U1⇤
1

, U�⇤
1

)]

11

=

D
U1⇤

1

R1

�1

, U�⇤
1

R2

�1

E

and

[cos ⇥(U1⇤
1

, U�⇤
1

)]

22

=

D
U1⇤

1

R1

�2

, U�⇤
1

R2

�2

E
,

so

���U1⇤
1

R� � U�
1

���
2

F
:=

���U1⇤
1

R1

�R
2⇤
� � U�

1

���
2

F

=

���U1⇤
1

R1

� � U�
1

R2

�

���
2

F

= 2(1� [cos ⇥(U1⇤
1

, U�⇤
1

)]

11

+ 1� [cos ⇥(U1⇤
1

, U�⇤
1

)]

22

)

 4� 4

s

1� (

2��

� � 2��

)

2

= O(��)! 0.

Equivalent results show that for a different unitary transform RQ
� ,

���RQ
� Q1

1

� U�
1

���
2

F
=

O(��). Combining these results and applying the triangle inequality,

���S�
11

� S1(�)

11

���
F

:=

���S�
11

�RQ
� Q1

1

A1U1⇤
1

R�

���
F
 O(�

1
2
� )

and
���T �

11

� T1(�)

11

���
F

:=

���T �
11

�RQ
� Q1

1

B1U1⇤
1

R�

���
F
 O(�

1
2
� )

also, gives convergence of the generalized Schur components of the finite order ma-
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trices along a triangular array to unitary transformations (S1(�)

11

, T1(�)

11

) of the gen-

eralized Schur components of the limit pencil. Noting that unitary transformations

leave singular values unaffected and that S1
11

is invertible, S�
11

is also asymptotically

invertible, so by Weyl’s inequality

���S��1

11

� S1(�)�1

11

���
F


���S��1

11

���
op

���S1(�)�1

11

���
op

���S�
11

� S1(�)

11

���
F
 O(�

1
2
� ).

Using the unitarity of R� and applying the triangle inequality, one can see that

���U�⇤
1

S��1

11

T �
11

U�
1

� U1⇤
1

S1�1

11

T1
11

U1
1

���
F

=

���U�⇤
1

S��1

11

T �
11

U�
1

� U1⇤
1

R�S
1(�)�1

11

T1(�)

11

R⇤
�U

1
1

���
F
 O(�

1
2
� ),

and so the fact that Schur vectors do not converge does not affect the convergence

of the policy function, which is invariant to unitary transformations of these vectors.

Finally, defining

ˆh� = (I
2

+ ĝ⇤�ĝ�)
�1

((

I
2

ĝ�

)

⇤U�⇤
1

S��1

11

T �
11

U�
1

(

I
2

ĝ�

))

the above results and the triangle inequality imply that
���ˆh� � ˆh1

���
F
 O(�

1
2
� ).

To show compactness, it suffices to show that the singular values converge to 0.

As g[.] and h[.] are block-diagonal, it suffices to show that the operator norm of each

block converges to 0. As the operator norm is bounded by the Frobenius norm, each

block has operator norm at most O(�
1
2
� )! 0 and so compactness holds.

(ii) To show that an h[.] is Hilbert Schmidt, Tr(h⇤h) < 1, it suffices to show

that the sum of squared singular values converges. As the sum of squared singular

values for each block is equal to the square of its Frobenius norm, which is O(��) for

large |�|, convergence holds so long as
P1

�=n �� < 1 for some finite n. Superlinear
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convergence �� = O(|�|�(1+✏)
) for some ✏ > 0 is sufficient for this sum to be finite.

Chapter 3 Proofs

Proof. of (3.1) Unitarity of U provides the following facts: since U⇤
= U�1, we have

U⇤U = I. Decomposing U into U
11

, U
12

, U
21

, and U
22

obtain

2

64
U⇤

11

U
11

+ U⇤
21

U
21

U⇤
11

U
12

+ U⇤
21

U
22

U⇤
12

U
11

+ U⇤
22

U
21

U⇤
12

U
12

+ U⇤
22

U
22

3

75 = I =

2

64
Ix 0

0 Iy

3

75

Where Ix = 'X⇤'X and Iy = 'Y ⇤'Y are the identity operators on Hx and Hy

respectively. To see this more formally, consider U⇤
11

U
12

+ U⇤
21

U
22

. It can be written

as

'X⇤U⇤
1

U
1

'Y
+ 'X⇤U⇤

2

U
2

'Y
= 'X⇤

(U⇤
1

U
1

+ U⇤
2

U
2

)'Y

= 'X⇤'Y
= 0

Equivalent calculations describe the other identities.

Using these identities we can express

(U
11

+ U
12

gX)

⇤
(U

11

+ U
12

gX) = U⇤
11

U
11

+ U⇤
11

U
12

gX + g⇤XU⇤
12

U
11

+ g⇤XU⇤
12

U
12

gX

= Ix � U⇤
21

U
21

� U⇤
21

U
22

gX + g⇤XU⇤
22

U
21

+ g⇤X(Iy � U⇤
22

U
22

)gX

= Ix � U⇤
21

U
21

+ U⇤
21

U
22

U⇤
22

(U
22

U⇤
22

)

�1U
21

+U⇤
21

(U
22

U⇤
22

)

�1⇤U
22

U⇤
22

U
21

+ g⇤XIygX � g⇤XU⇤
22

U
22

gX

= Ix � U⇤
21

U
21

+ U⇤
21

U
21

+ U⇤
21

U
21

+ g⇤XIygX � U⇤
21

U
21

= Ix + g⇤XIygX

= Ix + gX
⇤gX
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As a result, post-multiplying by (U
11

+U
12

gX)

�1 and inverting (Ix +gx
⇤gx), obtain

(U
11

+ U
12

gX)

�1

= (Ix + gX
⇤gX)

�1

(U
11

+ U
12

gX)

⇤

Lemma 3.2

Proof. By the Courant-Fisher min-max characterization of eigenvalues of self-adjoint

matrices,

�
min

(PAP ) = min{max{hPAPx, xi | kxk = 1, x 2 U}|U ✓ Sp(P ), dim U = 1}

= min{max{hAPx, Pxi | kxk = 1, x 2 U}|U ✓ Sp(P ), dim U = 1}

= min{max{hAx, xi | kxk = 1, x 2 U}|U ✓ Sp(P ), dim U = 1}

� inf{max{hAx, xi | kxk = 1, x 2 U}|U ✓ H, dim U = 1}

= �
min

(A)

= ��1

max

(A�1

)

=

1

kA�1k

where the fact that orthonormal projections are self-adjoint was used in line 2, line

5 follows from Helmberg (1969) §30 corollary 8.1, line 6 follows from the subsequent

exercise, and the final line follows from the same corollary and the assumption of

positivity, so kA�1k = max{|�|, � 2 ⌃(A�1

)} = max{�, � 2 ⌃(A�1

)}.

Lemma 3.3

Proof. ⇡k1
s.o.t.! IH2 and ⇡k2

s.o.t.! IH1 by monotonicity and Helmberg (1969) §30 The-

orem 5. As a result, for any sequence k
1

, k
2

! 1, ˜A
s.o.t.! A and ˜B

s.o.t.! B since
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8x 2 H
1

k(⇡k1A⇡k2 � A)xk  k⇡k1k kAk k(⇡k2 � IH1)xk+ k(⇡k1 � IH2)Axk ! 0

since k⇡k1k  1 and A is a bounded operator so kAk < 1. Similarly for B and so

also A⇤ and B⇤. More generally, strong operator topology convergence is continuous

with respect to application of uniformly bounded sequences of linear operators.

Next, we find a uniform bound on k((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A � ˜B))

�1k. For this, first we

note that by the definition of �-regularity, 8⇣ 2 �, ⇣A � B is a bounded operator

with bounded inverse, and by compactness of �, and the fact that the resolvent set

is open (Gohberg et al. , 1990, IV.1) and so the inverse is continuous over a curve

inside of it, max

⇣2�

k(⇣A�B)

�1k < 1. (⇣A⇤ � B⇤
)(⇣A � B) is therefore a bounded,

invertible, self-adjoint positive operator with bounded inverse, uniformly over ⇣ 2 �.

Applying 3.2, obtain that for any k
2

,

max

⇣2�

k(⇡k2
(⇣A⇤ �B⇤

)(⇣A�B)⇡k2
)

�1k  max

⇣2�

k((⇣A⇤ �B⇤
)(⇣A�B))

�1k <1.

To extend this to ((⇣ ˜A⇤� ˜B⇤
)(⇣ ˜A� ˜B))

�1, note that for a fixed k
2

, ⇡k2
(⇣A⇤�B⇤

)(⇣A�
B)⇡k2 is a finite-dimensional and so compact operator which may be represented by

a k
2

⇥ k
2

matrix. Taking the k
2

-dimensional set of right singular vectors of this

matrix on the space spanned by ⇡k2 , say {si}k2
i=1

, (⇣A � B)⇡k2 may be represented

by the operator
Pk2

i=1

hsi, (.)i (⇣A � B)si. By ⇡k1
s.o.t.! IH2 , for fixed k

2

, as k
1

! 1
max

i21...k2

k(⇡k1 � IH2)(⇣A�B)sik ! 0 and so

k(⇡k1 � IH2)(⇣A�B)⇡k2k  k
2

max

i21...k2

k(⇡k1 � IH2)(⇣A�B)sik ! 0.

225



The same logic applies to the adjoint, and so for fixed k
2

,

k⇡k2
(⇣A⇤ �B⇤

)⇡k1
(⇣A�B)⇡k2 � ⇡k2

(⇣A⇤ �B⇤
)(⇣A�B)⇡k2k ! 0. (15)

This applies uniformly over ⇣ by compactness. Thus, all singular values also converge,

and so the singular values of the inverse converge as well. Thus, by taking a sequence

of k
1

increasing in k
2

, we may choose k
1

(k
2

) large enough such that for any chosen

� > 0,

max

⇣2�

k((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))

�1k  max

⇣2�

k((⇣A⇤ �B⇤
)(⇣A�B))

�1k+ � <1

uniformly in k
2

.

As a result, we have that 8x 2 H
1

k((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))

�1x� ((⇣A⇤ �B⇤
)(⇣A�B))

�1xk 
���((⇣ ˜A⇤ � ˜B⇤

)(⇣ ˜A� ˜B))

�1

��� ⇤

k(⇣ ˜A⇤� ˜B⇤
)(⇣ ˜A� ˜B)((⇣ ˜A⇤� ˜B⇤

)(⇣ ˜A� ˜B))

�1x�((⇣ ˜A⇤� ˜B⇤
)(⇣ ˜A� ˜B))((⇣A⇤�B⇤

)(⇣A�B))

�1xk

+ k(I � ((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))

�1

(⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))((⇣A⇤ �B⇤

)(⇣A�B))

�1xk 

(max

⇣2�

k((⇣A⇤ �B⇤
)(⇣A�B))

�1k+ �)⇤

(k(⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B)((⇣ ˜A⇤ � ˜B⇤

)(⇣ ˜A� ˜B))

�1x� xk+

kx� ((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))((⇣A⇤ �B⇤

)(⇣A�B))

�1xk)+

+ k(I � ((⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))

�1

(⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A� ˜B))((⇣A⇤ �B⇤

)(⇣A�B))

�1xk

The term on the penultimate line goes to zero since (⇣ ˜A⇤ � ˜B⇤
)(⇣ ˜A � ˜B)

s.o.t.!
(⇣A⇤ � B⇤

)(⇣A � B). The final and third from last lines are given by projections

of a fixed vector onto the orthogonal complements of the image and the domain,

respectively, of (⇣ ˜A⇤� ˜B⇤
)(⇣ ˜A� ˜B), which by the self-adjointness of this operator are
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identical. We may then note that by 15, for any k
2

, there exists k
1

such that these

projections are within any ✏ of the projections onto the orthogonal complement of

the image and domain (again identical) of ⇡k2
(⇣A⇤ � B⇤

)(⇣A � B)⇡k2 . As this is a

projection onto a monotonically decreasing sequence of subspaces whose intersection

converges to the null set as k
2

grows, Helmberg (1969) §30 Theorem 5 applies, and

so both these terms also converge to 0. Again this result holds uniformly in ⇣ 2 �.

As a result, passing through the product with (⇣ ˜A⇤ � ˜B⇤
)

˜A, 8x 2 H
1

max

⇣2�

k((⇣ ˜A⇤� ˜B⇤
)(⇣ ˜A� ˜B))

�1

(⇣ ˜A⇤� ˜B⇤
)

˜Ax�((⇣A⇤�B⇤
)(⇣A�B))

�1

(⇣A⇤�B⇤
)Axk ! 0.

This uniform convergence then implies by dominated convergence that

˜P k1(k2),k2
1

s.o.t.! 1

2⇡◆

ˆ
�

((⇣A⇤ �B⇤
)(⇣A�B))

�1

(⇣A⇤ �B⇤
)Ad⇣.

Then, by the invertibility of (⇣A�B),

((⇣A⇤ �B⇤
)(⇣A�B))

�1

= (⇣A�B)

�1

(⇣A⇤ �B⇤
)

�1

and so

1

2⇡◆

ˆ
�

((⇣A⇤ �B⇤
)(⇣A�B))

�1

(⇣A⇤ �B⇤
)Ad⇣ =

1

2⇡◆

ˆ
�

(⇣A�B)

�1Ad⇣ = P
1

and so the lemma holds.

Lemma 3.4

Proof. By strong operator topology convergence of ˜P k1(k2),k2
1

to P
1

, we have that for

any fixed Zk3 and any � > 0, there exists, by 3.3, k
2

(k
3

) and k
1

(k
2

(k
3

)), such that

k ˜P k1(k2(k3)),k2(k3)

1

Zk3 � P
1

Zk3k < �. P
1

Zk3 is a fixed quasimatrix of rank no greater

than k
3

, and so, unless it is identically 0, it has a minimal non-zero singular value,
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call it �k3
min

. We may therefore set "k3 =

1

2

�k3
min

if P
1

Zk3 is not identically 0 and some

small constant " if it is. By Weyl’s inequality for singular values (see, e.g., Tao (2011,

Ch. 1.3)), we have by above that there exist k
2

(k
3

) and k
1

(k
2

(k
3

)) such that

|�i(
˜P k1(k2(k3)),k2(k3)

1

Zk3
)� �i(P1

Zk3
)|  k ˜P k1(k2(k3)),k2(k3)

1

Zk3 � P
1

Zk3k < "k3 8i,

where �i is the ith singular value in order of decreasing absolute value. As a result,

if �i(P1

Zk3
) = 0, the numerical singular value will be below the threshold, and if

�i(P1

Zk3
) 6= 0 (and so "k3 6= 0), the numerical singular value will be greater than

�k3
min

� "k3 = "k3 and so above the threshold. As a result, for sufficiently large k
2

, reg-

ularizing selects exactly the singular vectors corresponding to nonzero singular values.

Next, we assess the bias induced in the singular vectors themselves by the numerical

error in ˜P k1(k2(k3)),k2(k3)

1

Zk3 using a variant of the Davis-Kahan theorem for eigenvec-

tors of self-adjoint operators. In particular, we may use the construction of Bosq

(2000) providing error bounds on the norm convergence of approximate eigenvectors

by noting that the left singular vectors of ˜P k1(k2(k3)),k2(k3)

1

Zk3 are the eigenvectors of

(

˜P k1(k2(k3)),k2(k3)

1

Zk3
)(

˜P k1(k2(k3)),k2(k3)

1

Zk3
)

⇤, and so the ith column of U
⇤k3,"

k3
1

, denoted

U
⇤k3,"

k3
1i converges (up to a sign change) to the ith singular vector of P

1

Zk3 , suggestively

denoted U⇤(k3)

1i . Formally,

ksign(hU⇤k3,"
k3

1i , U⇤(k3)

1i i)U⇤k3,"
k3

1i � U⇤(k3)

1i k 
2

p
2

min{�i � �i+1

.�i � �i�1

}k(
˜P k1(k2(k3)),k2(k3)

1

Zk3
)(

˜P k1(k2(k3)),k2(k3)

1

Zk3
)

⇤ � (P
1

Zk3
)(P

1

Zk3
)

⇤k

following from Bosq (2000, Lemma 4.3), where �i is the ith singular value of P
1

Zk3 .

This formula applies in the case that the gap in the singular values is non-zero. If some

eigenvalues have multiplicity greater than one, Bosq (2000, Lemma 4.4) shows that

the sample singular vectors converge also to vectors spanning the spectral subspace

corresponding to that eigenvalue, where the measure of the spectral gap used is then
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given by the gap between the corresponding eigenvalue and that of the closest distinct

eigenvalue. Note that for fixed k
3

, the operators of interest are compact. As a result,

for any fixed k
3

, there exists a minimal spectral gap Ck3 = min

i<k3

{�i � �i+1

}, if the

sequence of singular values is arranged so that repeated singular values occur only

once in the sequence. So, by the operator norm convergence of ˜P k1(k2(k3)),k2(k3)

1

Zk3 to

P
1

Zk3 , 8� > 0 there exists a k
2

(k
3

) such that

k( ˜P k1(k2(k3)),k2(k3)

1

Zk3
)(

˜P k1(k2(k3)),k2(k3)

1

Zk3
)

⇤ � (P
1

Zk3
)(P

1

Zk3
)

⇤k <
Ck3

2

p
2

�

and so max

i=1...k3

ksign(hU⇤k3,"
k3

1i , U⇤(k3)

1i i)U⇤k3,"
k3

1i � U⇤(k3)

1i k < �.

We may define for each k
3

the operator U (k3)

1

by U⇤(k3)

1

= [U⇤(k3),a
1

, U⇤(k3),b
1

] where

U⇤(k3),a
1

is given by the quasimatrix with left singular vectors of P
1

Zk3 corresponding

to non-zero singular values as columns, without loss of generality assumed to take

the sign as U
⇤k3,"

k3
1i , so we may ignore the indeterminacy of the sign in the conver-

gence result, and U⇤(k3),b
1

is constructed by taking a complete orthonormal basis of

Im(P
1

)/Im(U (k3),a
1

) as columns, so U (k3)

1

is an analysis operator on Im(P
1

) represent-

ing the coefficients of an element of this space with respect to a complete orthonormal

basis on Im(P
1

), and mapping elements of H
1

/Im(P
1

) to 0.

So, since all the columns converge and the correct (corresponding to non-zero

singular value) columns are chosen asymptotically, we obtain along the sequence

k
1

(k
2

(k
3

)), k
2

(k
3

), and "k3 , kUk3,"
k3

1

� U (k3),a
1

k ! 0. To show 8x 2 H
1

, k(U (k3),a
1

�
U (k3)

1

)xk ! 0, note that

k(U (k3),a
1

� U (k3)

1

)xk = kU (k3),b
1

xk = kU⇤(k3),b
1

U (k3),b
1

xk

because U⇤(k3),b
1

as a matrix of orthonormal columns is an isometry on Im(U (k3),b
1

).
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By the definition of U (k3),b
1

, U⇤(k3),b
1

U (k3),b
1

is an orthogonal projection onto

Im(P
1

)/Im(U (k3),a
1

) = Im(P
1

)/Im(P
1

Zk3
)

which is, by construction of Zk3 , a monotonically decreasing sequence of subsets

converging to the empty set, and so goes to 0 by Helmberg (1969) §30 Theorem 5.

Combining the above, obtain 8x 2 H
1

, k(Uk3,"
k3

1

�U (k3)

1

)xk  kUk3,"
k3

1

�U (k3),a
1

kkxk+
k(U (k3),a

1

� U (k3)

1

)xk ! 0, as desired.

Lemma 3.5

Proof. It suffices to show that I � U
k3,"

k3
⇤

1

U
k3,"

k3
1

converges in the strong operator

topology to an orthogonal projection onto H
1

/Im(P
1

), as the subsequent steps of

the proof are identical to those of the previous one with ˜P k1(k2),k2
1

replaced by I �
U

k3,"
k3
⇤

1

U
k3,"

k3
1

. For this, note simply that for any k
3

, I�U (k3)⇤
1

U (k3)

1

is identical and an

orthogonal projection onto H
1

/Im(P
1

), by the construction of U (k3)

1

. Strong operator

topology convergence of U
k3,"

k3
1

to U (k3)

1

was established by the previous lemma, and

by construction, since U
k3,"

k3
⇤

1

is given by a set of orthonormal column vectors, it

satisfies kUk3,"
k3
⇤

1

k  1 uniformly in k
3

. Further, for all x 2 Im(U (k3)

1

), a space

isometrically isomorphic to and so w.lo.g. represented by `
2

,

k(Uk3,"
k3
⇤

1

� U (k3)⇤
1

)xk`2 kUk3,"
k3
⇤

1

� U (k3),a⇤
1

kkxk`2 + k(U (k3),a⇤
1

� U (k3)⇤
1

)xk`2
=kUk3,"

k3
1

� U (k3),a
1

kkxk`2 + k(U (k3),a⇤
1

� U (k3)⇤
1

)xk`2

since the operator norm is invariant under adjoints. The first term goes to zero by the

argument in the previous lemma. By the isometry property of U (k3),b
1

on Im(U (k3)⇤
1

),

the second term is identical in norm to kU (k3),b
1

U (k3),b⇤
1

xk`2 which is a sequence of

projections onto spaces monotonically decreasing to zero and so converges to 0 by

Helmberg (1969) §30 Theorem 5. Combining these results, I � U
k3,"

k3
⇤

1

U
k3,"

k3
1

s.o.t.!
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I � U (k3)⇤
1

U (k3)

1

as desired.

Lemma 3.6

Proof. First, show that Im(⇡
2

) = Im(AP
1

). By Gohberg et al. (1990, Thm IV.1.1),

⇡
2

A = AP
1

, so if we can show Im(⇡
2

) = Im(⇡
2

A), this holds. Clearly, Im(⇡
2

A) ✓
Im(⇡

2

). Consider any z 2 Im(⇡
2

). By construction, A
1

maps Im(P
1

) ! Im(⇡
2

) and

is invertible. So since z 2 Im(⇡
2

), A�1

1

z 2 ImP
1

and so AA�1

1

z = A
1

A�1

1

z = z and so

⇡
2

AA�1

1

z = ⇡
2

z. Then because ⇡
2

is a projection, ⇡
2

z = z. So, for any z 2 Im(⇡
2

),

there exists an element, A�1

1

z such that ⇡
2

AA�1

1

z = z, and so Im(⇡
2

) ✓ Im(⇡
2

A). So

Im(⇡
2

) = Im(⇡
2

A) = Im(AP
1

), and so we can use the span of AP
1

to construct Q
1

.

By 3.4, for fixed k
3

, as k
2

, k
1

(k
2

) ! 1, kUk3,"
k3
⇤

1

� U (k3),a⇤
1

k ! 0. As this is a

finite-dimensional matrix, we have by the boundedness and pointwise consistency of

˜A and ˜P k1(k2),k2
1

that

k ˜A ˜P k1(k2),k2
1

U
k3,"

k3
⇤

1

� AP
1

U (k3),a⇤
1

k ! 0

as k
2

, k
1

(k
2

)!1. By construction, the columns of U (k3),a⇤
1

are orthonormal elements

of Im(P
1

), and AP
1

has bounded inverse on Im(P
1

). As a result, uniformly over all

k
3

, the minimum singular value of AP
1

U (k3),a⇤
1

is bounded away from 0. So, by the

continuity of the QR decomposition with respect to the operator norm at points with

minimal singular value bounded away from 0 (Golub & van Loan, 1996, Ch. 5),

for fixed k
3

, kQk3⇤
1

� Q(k3),a⇤
1

k ! 0 where Q(k3),a⇤
1

R(k3)

= qr(AP
1

U (k3),a⇤
1

). Q(k3),a⇤
1

is a finite rank operator whose columns are orthonormal elements of Im(AP
1

) =

Im(⇡
2

). As with U (k3)

1

, we may define Q(k3)⇤
1

by Q(k3)⇤
1

= [Q(k3),a⇤
1

, Q(k3),b⇤
1

] where

Q(k3),b⇤
1

is constructed by taking a complete orthonormal basis of Im(⇡
2

)/Im(Q(k3),a⇤
1

)

as columns, so Q(k3)

1

is an analysis operator on Im(⇡
2

) representing the coefficients of

an element of this space with respect to a complete orthonormal basis on Im(⇡
2

), and

mapping elements of H
2

/Im(⇡
2

) to 0. To show 8x 2 H
2

, k(Q(k3),a
1

� Q(k3)

1

)xk ! 0,
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note that

k(Q(k3),a
1

�Q(k3)

1

)xk = kQ(k3),b
1

xk = kQ(k3),b⇤
1

Q(k3),b
1

xk

because Q(k3),b⇤
1

as a matrix of orthonormal columns is an isometry on Im(Q(k3),b
1

).

By the definition of Q(k3),b⇤
1

, Q(k3),b⇤
1

Q(k3),b
1

is an orthogonal projection onto

Im(⇡
2

)/Im(Q(k3),a⇤
1

) = Im(⇡
2

)/Im(AP
1

U (k3),a⇤
1

)

which is, by construction of U (k3),a
1

, which spans a sequence of subspaces monotonically

converging to Im(P
1

), a monotonically decreasing sequence of subsets converging to

the empty set, and so goes to 0 by Helmberg (1969) §30 Theorem 5.

Combining the above, obtain 8x 2 H
2

,

k(Qk3
1

�Q(k3)

1

)xk  kQk3
1

�Q(k3),a
1

kkxk+ k(Q(k3),a
1

�Q(k3)

1

)xk ! 0,

as desired. By the construction of Q(k3)⇤
1

from orthonormal vectors and the invariance

of operator norm under adjoints, 8x 2 Im Q(k3),

k(Qk3⇤
1

�Q(k3)⇤
1

)xk  kQk3⇤
1

�Q(k3),a⇤
1

kkxk+ k(Q(k3),a⇤
1

�Q(k3)

1

)xk ! 0

as well.

Lemma 3.7

Proof. Part (i):

By 3.6 and the proof of 3.4

kQk3
1

˜AU
k5,"

k5
⇤

1

�Q(k3)

1

AU (k5),a⇤
1

k  kQk3
1

˜AkkUk5,"
k5
⇤

1

� U (k5),a⇤
1

k+

kQk3
1

kk( ˜A� A)U (k5),a⇤
1

k+

k(Qk3
1

�Q(k3)

1

)AU (k5),a⇤
1

k
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goes to 0 as k
3

!1 for fixed k
5

, since U (k5),a⇤
1

is finite dimensional. By 3.2, and the

invertibility of S
11

,

k((Q(k3)

1

AU (k5),a⇤
1

)

⇤Q(k3)

1

AU (k5),a⇤
1

)

�1k�1 � k(S⇤
11

S
11

)

�1k�1 > 0,

and so for any � > 0, there exists k
3

(k
5

) such that

k((Qk3
1

˜AU
k5,"

k5
⇤

1

)

⇤Qk3
1

˜AU
k5,"

k5
⇤

1

)

�1k  k(S(k5)⇤
11

S(k5)

11

)

�1k�1

+ �.

So, by this and 3.4, (Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

converges in strong operator topology to S(k5)�1

11

and, similarly,

U (k5)⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

s.o.t.! U (k5)⇤
1

S(k5)�1

11

Q(k3)

1

.

Strong operator topology convergence of T k3
11

follows from boundedness and con-

vergence of its components, again by 3.6 and the proof of 3.4, similarly by the con-

vergence of the adjoints, Qk3⇤
1

T k3
11

Uk3
1

also converges in strong operator topology to

Q(k3)⇤
1

T (k3)

11

U (k3)

1

. Combining these results,

(Uk5⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

(Qk3⇤
1

T k3
11

Uk3
1

)

s.o.t.! U (k5)⇤
1

S(k5)�1

11

Q(k3)

1

Q(k3)⇤
1

T (k3)

11

U (k3)

1

=U (k5)⇤
1

S(k5)�1

11

T (k3)

11

U (k3)

1

which holds because Q(k3)

1

Q(k3)⇤
1

acts as the identity on Im Q(k3)

1

◆ Im T (k3)

11

by defi-

nition of T (k3)

11

.

Part (ii):

Assume now also that ⌦

1

and ⌦

2

are compact operators. Consider arbitrary x 2
Im(P

1

). By Gohberg et al. (1990, Theorem IV.1.1), (Bx, Ax) = (B
1

x, A
1

x), and by

the generalized Schur decomposition, (Bx, Ax) = (Q⇤
1

T
11

U
1

x, Q⇤
1

S
11

U
1

x). Applying
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A�1

1

to both, obtain

(⌦

1

x, x) = (A�1

1

Q⇤
1

T
11

U
1

x, A�1

1

Q⇤
1

S
11

U
1

x).

As a result, 8x 2 Im(P
1

) A�1

1

Q⇤
1

T
11

U
1

x = ⌦

1

x, and since for all x 2 H
1

/Im(P
1

),

U
1

x = 0 by construction and U⇤
1

U
1

projects onto Im(P
1

), A�1

1

Q⇤
1

T
11

U
1

= ⌦

1

U⇤
1

U
1

.

Rearranging, obtain T
11

= Q
1

A
1

⌦

1

U⇤
1

. Since Q
1

, A
1

, and U⇤
1

are bounded and ⌦

1

is

compact by assumption, T
11

is a compact operator. Similarly, S
11

= Q
1

A
1

U⇤
1

and so

is bounded and invertible since A
1

is, so S�1

11

T
11

is also a compact operator.

While strong operator topology convergence of T k3
11

follows from boundedness and

convergence of its components, compactness allows Qk3⇤
1

T k3
11

Uk3
1

to converge in op-

erator norm. Pre- and post-multiplication by Qk3⇤
1

and Uk3
1

respectively generate a

quantity that depends only on the domain of U
1

and Q
1

and not the range, as U⇤
1

U
1

and Q⇤
1

Q
1

are orthogonal projections in H
1

, as are their finite-dimensional analogues.

For fixed k
3

and noting that the domain of U (k3),a⇤
1

is isometrically isomorphic to k
3

dimensional Euclidean space and so we may write a basis in this space as {ei}k3
i=1

, we

obtain

kQk3
1

˜BUk3⇤
1

�Q(k3),a
1

BU (k3),a⇤
1

k 

sup

(

P
k3
i=1 z2

i

)

1
2
=1

k
k3X

i=1

(Qk3
1

˜BUk3⇤
1

�Q(k3),a
1

BU (k3),a⇤
1

)zieik 

k3X

i=1

k(Qk3
1

˜BUk3⇤
1

�Q(k3),a
1

BU (k3),a⇤
1

)eik ! 0

where the last line follows from the triangle inequality, the fact that |zi|  1 8i,
and boundedness and pointwise convergence. Defining T (k3),a

11

= Q(k3),a
1

BU (k3),a⇤
1

, this

may be expressed as kT k3
11

� T (k3),a
11

k ! 0 for fixed k
3

. Pre- and post- multiplying to

get an operator acting on H
1

, obtain
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kQk3⇤
1

T k3
11

Uk3
1

�Q(k3),a⇤
1

T (k3),a
11

U (k3),a
1

k 

kQk3⇤
1

kkUk3
1

kkT k3
11

� T (k3),a
11

k+ kUk3
1

kk(Qk3⇤
1

�Q(k3),a⇤
1

)T (k3),a
11

k

+kQ(k3),a⇤
1

T (k3),a
11

(Uk3
1

� U (k3),a
1

)k ! 0

as k
1

(k
2

) and k
2

! 1 for fixed k
3

. The first term goes to 0 since each element is

bounded and kT k3
11

� T (k3),a
11

k ! 0. The second term goes to 0 by again bounding the

supremum by a sum over a finite set times the maximum coefficient and applying the

triangle inequality, then using 3.6 to ensure pointwise convergence. The final term

may be seen to be bounded by kQ(k3),a⇤
1

T (k3),a
11

kkUk3
1

�U (k3),a
1

k, where the first term is

bounded and the second was shown to converge to 0 for fixed k
3

in the proof of 3.4.

We then have that

Q(k3),a⇤
1

T (k3),a
11

U (k3),a
1

= Q(k3),a⇤
1

Q(k3),a
1

BU (k3),a⇤
1

U (k3),a
1

=

Q(k3),a⇤
1

Q(k3),a
1

Q(k3)⇤
1

Q(k3)

1

BU (k3)⇤
1

U (k3)

1

U (k3),a⇤
1

U (k3),a
1

=

Q(k3),a⇤
1

Q(k3),a
1

Q(k3)⇤
1

T (k3)

11

U (k3)

1

U (k3),a⇤
1

U (k3),a
1

is a compression of the compact operator Q(k3)⇤
1

T (k3)

11

U (k3)

1

projecting domain and

range onto a sequence of subspaces monotonically increasing to the full space and

so kQ(k3),a⇤
1

T (k3),a
11

U (k3),a
1

� Q(k3)⇤
1

T (k3)

11

U (k3)

1

k ! 0 as k
3

! 1. Combining these two

results, kQk3⇤
1

T k3
11

Uk3
1

�Q(k3)⇤
1

T (k3)

11

U (k3)

1

k ! 0 as k
3

!1.

In the case where �k6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

) > �k6+1

(Q(k3)⇤
1

T (k3)

11

U (k3)

1

), convergence of

kthreshk6(Q
k3⇤
1

T k3
11

Uk3
1

) � threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)k to 0 as k
3

! 1 then follows

by the consistency of the singular value decomposition with respect to the operator

norm, and in particular, Weyl’s inequality for singular values and the Sin⇥ theorem
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for singular vectors as in the proof of 3.4, implying

kthreshk6(Q
k3⇤
1

T k3
11

Uk3
1

)� threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)k 

C/(�k6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)� �k6+1

(Q(k3)⇤
1

T (k3)

11

U (k3)

1

))kQk3⇤
1

T k3
11

Uk3
1

�Q(k3)⇤
1

T (k3)

11

U (k3)

1

k

where C is a universal constant. Note also that by compactness of Q(k3)⇤
1

T (k3)

11

U (k3)

1

,

the spectrum of (Q(k3)⇤
1

T (k3)

11

U (k3)

1

)

⇤Q(k3)⇤
1

T (k3)

11

U (k3)

1

is discrete, decays to 0, and all

eigenvalues have finite multiplicity. As a result, there exists an infinite subsequence

{k
6,i}1i=1

of singular values, with indices each separated by a finite integer, along

which �k6,i

(Q(k3)⇤
1

T (k3)

11

U (k3)

1

) > �k6,i

+1

(Q(k3)⇤
1

T (k3)

11

U (k3)

1

) holds, and this subsequence

also converges to 0, so we may take this as our increasing sequence k
6

. We then have

that, because

kthreshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)�Q(k3)⇤
1

T (k3)

11

U (k3)

1

k ! 0

as k
6

! 1 since this is an increasing sequence of compressions converging to a

compact operator,

kthreshk6,i(Q
k3⇤
1

T k3
11

Uk3
1

)�Q(k3)⇤
1

T (k3)

11

U (k3)

1

k ! 0

as i!1.

Note that for fixed k
6

, threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

) is a finite dimensional object

which, despite the notation, does not depend on the value of k
3

. This is important

because k
3

must grow with k
6

fixed for convergence to hold, and so a finite dimensional

object like threshk6(T
(k3)

11

) which does depend on k
3

, when a pointwise convergent

operator is applied to it, is not guaranteed to converge in norm. Combining the
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above, obtain

kU (k5)⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

threshk6(Q
k3⇤
1

T k3
11

Uk3
1

)�

U (k5)⇤
1

S(k5)�1

11

Q(k3)

1

threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)k ! 0

for fixed k
6

. Since

kU (k5)⇤
1

S(k5)�1

11

Q(k3)

1

threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)� U (k5)⇤
1

S(k5)�1

11

T (k3)

11

U (k3)

1

k 

kU (k5)⇤
1

S(k5)�1

11

Q(k3)

1

kkthreshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

)�Q(k3)⇤
1

T (k3)

11

U (k3)

1

k

and the first component is bounded while the second goes to 0 as k
6

!1, the final

part of the lemma holds.

Theorem 3.1

Proof. Part (i):

Consistency of gk4
X follows from application of 3.2 and the proof of 3.5. In partic-

ular, for fixed k
4

as k
3

increases, kUk4,"
k4

2

� U (k4),a
2

k ! 0, and so by the continuity of

singular values and the boundedness of 'Y , for any k
4

and any � > 0, there exists K
3

such that 8k
3

> K
3

����
min

(U
k4,"

k4
2

'Y 'Y ⇤U
k4,"

k4
⇤

2

)� �
min

(U (k4),a
2

'Y 'Y ⇤U (k4),a⇤
2

)

��� < �.

Then by the assumption that U
2

'Y 'Y ⇤U⇤
2

has bounded inverse and 3.2, since

U (k4),a
2

'Y 'Y ⇤U (k4),a⇤
2

is a compression of U
2

'Y 'Y ⇤U⇤
2

, it satisfies

�
min

(U (k4),a
2

'Y 'Y ⇤U (k4),a⇤
2

) � k(U
2

'Y 'Y ⇤U⇤
2

)

�1k�1
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for all k
4

. Thus, there exists a sequence of k
3

(k
4

) such that

�
min

(U
k4,"

k4
2

'Y 'Y ⇤U
k4,"

k4
⇤

2

) > k(U
2

'Y 'Y ⇤U⇤
2

)

�1k�1 � � > 0

for all k
4

and so k(Uk4,"
k4

2

'Y 'Y ⇤U
k4,"

k4
⇤

2

)

�1k is uniformly bounded. U
k4,"

k4
2

converges

in strong operator topology to U (k4)

2

by 3.5, and, furthermore, U
k4,"

k4
⇤

2

converges

pointwise to U (k4)⇤
2

by steps identical to those used to show U
k3,"

k3
⇤

1

s.o.t.! U (k3)⇤
1

in

the proof of 3.5. Since each component in the composition is uniformly bounded in

operator norm and converges in strong operator topology, x 2 HX , there is a sequence

along which

k(gk4
X + 'Y ⇤U (k4)⇤

2

(U (k4)

2

'Y 'Y ⇤U (k4)⇤
2

)

�1U (k4)

2

'X
)xk ! 0.

Note that for any x 2 HX , �'Y ⇤U (k4)⇤
2

(U (k4)

2

'Y 'Y ⇤U (k4)⇤
2

)

�1U (k4)

2

'Xx is identical for

any k
4

regardless of the basis used to construct U (k4)

2

and so there is no loss in dropping

the superscript in the notation for the limit object gX .

Convergence of hk4,k5
X and hk6

X depend on the convergence of gk4
X but also of its

adjoint. By the invariance of operator norm with respect to adjoints and the point-

wise convergence of both U
k4,"

k4
2

and U
k4,"

k4
⇤

2

, gk4⇤
X

s.o.t.! g⇤X by the boundedness and

pointwise convergence of its components. Strong operator topology convergence of

'X⇤'X
+ gk4⇤

X gk4
X to 'X⇤'X

+ g⇤XgX then follows as well. To see that this convergence

is stable, note that 'X⇤'X
+gk4⇤

X gk4
X is a sum of quadratic forms and so is a self-adjoint

positive operator. Weyl’s inequality then gives that

�
min

('X⇤'X
+ gk4⇤

X gk4
X ) � �

min

('X⇤'X
) + �

min

(gk4⇤
X gk4

X ) � 1 + 0 = 1,

so k('X⇤'X
+ gk4⇤

X gk4
X )

�1k  1 for all k
4

.

Strong operator topology convergence of hk4,k5
X follows from the triangle inequality
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and boundedness and pointwise convergence of

('X⇤'X
+ gk4⇤

X gk4
X )

�1

(gk4⇤
X 'Y ⇤

+ 'X⇤
)

Uk5⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

(Qk3⇤
1

T k3
11

Uk3
1

)

and ('X
+ 'Y gk4

X )

by the above and 3.7 part (i). Note that as k
4

and k
5

appear in sequentially applied

components, k
4

need not be taken as a function of k
5

or vice versa, so long as k
3

(and subsequently k
2

and k
1

) are chosen as at least the maximum required value for

pointwise convergence over each component.

Part (ii):

Operator norm convergence for hk6
X follows by applying pointwise convergence of

gk4
X and

Uk5⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

on the finite dimensional operator threshk6(Q
(k3)⇤
1

T (k3)

11

U (k3)

1

) to achieve norm conver-

gence for any finite dimension k
6

, and then letting k
6

grow. Note that this requires

k
4

to be large relative to k
6

, but does not impose that k
4

be large relative to k
5

, as

pointwise consistent operators depending on k
4

and k
5

are not constructed sequen-

tially. In summary, the sequences kj which ensure norm convergence of hk6
X satisfy

k
1

� k
2

� k
3

� k
4

� k
6

and k
1

� k
2

� k
3

� k
5

� k
6

, where a� b indicates that

for each fixed b in the sequence, there is some a needed as a function of b which may

be arbitrarily large. Informally, this means that a is taken to be large relative to b.
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For fixed k
6

, obtain

khk6
X � hXk 

(k('X⇤'X
+ gk4⇤

X gk4
X )

�1

(gk4⇤
X 'Y ⇤

+ 'X⇤
)Uk5⇤

1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

k+ k'X
+ 'Y gk4

X k)⇤

kthreshk6(Q
k3⇤
1

T k3
11

Uk3
1

)� threshk6(Q
⇤
1

T
11

U
1

)k+

k('X⇤'X
+ gk4⇤

X gk4
X )

�1

(gk4⇤
X 'Y ⇤

+ 'X⇤
)Uk5⇤

1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

k⇤

kthreshk6(Q
⇤
1

T
11

U
1

)(('X
+ 'Y gk4

X )� ('X
+ 'Y gX))k+

k'X
+ 'Y gXk ⇤ k[('X⇤'X

+ gk4⇤
X gk4

X )

�1

(gk4⇤
X 'Y ⇤

+ 'X⇤
)Uk5⇤

1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3
1

)�

('X⇤'X
+ g⇤XgX)

�1

(g⇤X'
Y ⇤

+ 'X⇤
)U⇤

1

S�1

11

Q
1

]threshk6(Q
⇤
1

T
11

U
1

)k+

k('X⇤'X
+ g⇤XgX)

�1

(g⇤X'
Y ⇤

+ 'X⇤
)k ⇤ k'X

+ 'Y gXk⇤

kU⇤
1

S�1

11

Q
1

threshk6(Q
⇤
1

T
11

U
1

)� U (k5)⇤
1

S(k5)�1

11

T (k3)

11

U (k3)

1

k

Uniform boundedness of gk4
X , ('X⇤'X

+ gk4⇤
X gk4

X )

�1, and Uk5⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3⇤
1

and 3.7 ensure that the first term in the sum goes to 0. For the second term, note

that threshk6(Q
⇤
1

T
11

U
1

) =

Pk6

i=1

di hvi, (.)iui for some singular values di and singular

vectors ui and vi, and so

kthreshk6(Q
⇤
1

T
11

U
1

)(('X
+ 'Y gk4

X )� ('X
+ 'Y gX))k =

k
k6X

i=1

di

⌦
vi, (('

X
+ 'Y gk4

X )� ('X
+ 'Y gX))(.)

↵
uik =

k
k6X

i=1

di

⌦
((gk4⇤

X 'Y ⇤ � 'X⇤
)� (g⇤X'

Y ⇤
+ 'X⇤

))vi, (.)
↵
uik 

sup

i=1...k6

k((gk4⇤
X 'Y ⇤ � 'X⇤

)� (g⇤X'
Y ⇤

+ 'X⇤
))vik

k6X

i=1

|di|

For fixed k
6

, sup

i=1...k6

k((gk4⇤
X 'Y ⇤�'X⇤

)� (g⇤X'
Y ⇤

+'X⇤
))vik ! 0 by strong operator

topology convergence of gk4⇤
X , and

Pk6

i=1

|di| is bounded, so this term goes to 0 also.

Note that the rate at which k
4

must grow relative to k
6

depends on, among other
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issues, the (partial) sum of the singular values of Q
1

T
11

U
1

. By compactness, |di|! 0

as i grows, so
Pk6

i=1

|di| = O(k
6

) at worst. In the case where T
11

is a trace-class

operator, which is not uncommon in practice, this term is instead O(1) and the rate

is determined by the growth of sup

i=1...k6

k((gk4⇤
X 'Y ⇤�'X⇤

)� (g⇤X'
Y ⇤

+'X⇤
))vik. For the

third term, we again have that by the finite dimensionality of threshk6(Q1

T
11

U
1

) and

the strong operator topology convergence of Uk5⇤
1

(Sk5⇤
11

Sk5
11

)

�1Sk5⇤
11

Qk3⇤
1

due to 3.7 and

of ('X⇤'X
+ gk4⇤

X gk4
X )

�1 and gk4⇤
X 'Y ⇤

+ 'X⇤, we may find for any fixed k
6

a k
5

and a

k
4

such that this term is smaller than any given ✏ > 0. The final summand goes to 0

by 3.7.
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