Plans

Decision Theory: Setup

Decision Theory: Goals

Sequences

Sequences

t<-c(1,2,3,4)
y1<-c(0.75,0.75,0.75,0.75)
y2<-c(0.5,0.5,0.5,0.5)
y3<-c(0.25,0.25,0.25,0.25)
y4<-c(0,0,0,0)
# y5<-c(-0.25,-0.25,-0.25,-0.25)
# y6<-c(-0.5,-0.5,-0.5,-0.5)
# y7<-c(-0.75,-0.75,-0.75,-0.75)
# y8<-c(-1,-1,-1,-1)
seq1<-c(1,1,1,1)
seq2<-c(0,0,0,0)
seq3<-c(1,0,1,0)
seq4<-c(1,1,1,0)
# seq5<-c(0,1,1,1)
# seq6<-c(0,1,1,0)
# seq7<-c(0,1,0,1)
# seq8<-c(0,1,0,0)
dframe<-data.frame(t,y1,y2,y3,y4,seq1,seq2,seq3,seq4)
library(ggplot2)
ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10)+
  geom_point(aes(y=y2,color=seq2),size=10)+
  geom_point(aes(y=y3,color=seq3),size=10)+
  geom_point(aes(y=y4,color=seq4),size=10)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Example Sequences")

Preview of approaches

A Crude Classification of Philosophies

library(knitr)
library(kableExtra)
text_tbl <- data.frame(
  Criteria = c("Absolute Criterion", "Relative Criterion"),
  Worst.Case = c(
    "Adversarial Prediction", 
    "Online Learning "
    ),
  Average.Average.Case = c(
    "Bayesianism",
    " Bayesian Regret* " 
    ),
  Worst.Average.Case = c(
    "Minimax Theory",
    "Statistical Learning" 
    )  
)

kable(text_tbl) %>%
  kable_styling(full_width = F) %>%
  column_spec(1,border_right = T) %>%
  column_spec(2) %>%
  add_header_above(c(" " = 2, "Average Case" = 2))
Average Case
Criteria Worst.Case Average.Average.Case Worst.Average.Case
Absolute Criterion Adversarial Prediction Bayesianism Minimax Theory
Relative Criterion Online Learning Bayesian Regret* Statistical Learning

*rarely used, so will not be covered

Average case analysis: probability

Expected values and Risk

Average-Case decision-making

Bayes forecasts

Application: Sequences

ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10,alpha=0.1)+
  geom_point(aes(y=y2,color=seq2),size=10,alpha=0.1)+
  geom_point(aes(y=y3,color=seq3),size=10)+
  geom_point(aes(y=y4,color=seq4),size=10,alpha=0.1)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Sequences After Conditioning") 

Sequence Example, ctd

ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10,alpha=0.7)+
  geom_point(aes(y=y2,color=seq2),size=10,alpha=0.1)+
  geom_point(aes(y=y3,color=seq3),size=10,alpha=0.1)+
  geom_point(aes(y=y4,color=seq4),size=10,alpha=0.7)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Sequences After Conditioning") 

Worst case analysis of sequences

Adversarial Decision-Making

Example: Sequences

Online Learning and Regret Minimization

Applying Online Learning

Refining the average case approach: Probability Models

Example Probability Models

Working with probability models

Minimax Theory

Applying Minimax Theory

Statistical Learning

Appplying Statistical Learning

Average case over distributions

Criteria vs method

Future Classes: Forecasting theory