Plans

Decision Theory: Setup

Decision Theory: Goals

Sequences

Sequences

t<-c(1,2,3,4)
y1<-c(0.75,0.75,0.75,0.75)
y2<-c(0.5,0.5,0.5,0.5)
y3<-c(0.25,0.25,0.25,0.25)
y4<-c(0,0,0,0)
# y5<-c(-0.25,-0.25,-0.25,-0.25)
# y6<-c(-0.5,-0.5,-0.5,-0.5)
# y7<-c(-0.75,-0.75,-0.75,-0.75)
# y8<-c(-1,-1,-1,-1)
seq1<-c(1,1,1,1)
seq2<-c(0,0,0,0)
seq3<-c(1,0,1,0)
seq4<-c(1,1,1,0)
# seq5<-c(0,1,1,1)
# seq6<-c(0,1,1,0)
# seq7<-c(0,1,0,1)
# seq8<-c(0,1,0,0)
dframe<-data.frame(t,y1,y2,y3,y4,seq1,seq2,seq3,seq4)
library(ggplot2)
ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10)+
  geom_point(aes(y=y2,color=seq2),size=10)+
  geom_point(aes(y=y3,color=seq3),size=10)+
  geom_point(aes(y=y4,color=seq4),size=10)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Example Sequences")

Preview of approaches

A Crude Classification of Philosophies

library(knitr)
library(kableExtra)
text_tbl <- data.frame(
  Criteria = c("Absolute Criterion", "Relative Criterion"),
  Worst.Case = c(
    "Adversarial Prediction", 
    "Online Learning "
    ),
  Average.Average.Case = c(
    "Bayesianism",
    " (?) " 
    ),
  Worst.Average.Case = c(
    "Minimax Theory",
    "Statistical Learning" 
    )  
)

kable(text_tbl) %>%
  kable_styling(full_width = F) %>%
  column_spec(1,border_right = T) %>%
  column_spec(2) %>%
  add_header_above(c(" " = 2, "Average Case" = 2))
Average Case
Criteria Worst.Case Average.Average.Case Worst.Average.Case
Absolute Criterion Adversarial Prediction Bayesianism Minimax Theory
Relative Criterion Online Learning (?) Statistical Learning

Average case analysis: probability

Expected values and Risk

Average-Case Decision-making

Bayes forecasts

Application: Sequences

ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10,alpha=0.1)+
  geom_point(aes(y=y2,color=seq2),size=10,alpha=0.1)+
  geom_point(aes(y=y3,color=seq3),size=10)+
  geom_point(aes(y=y4,color=seq4),size=10,alpha=0.1)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Sequences After Conditioning") 

Sequence Example, ctd

ggplot(data=dframe,mapping=aes(x=t))+
  geom_point(aes(y=y1,color=seq1),size=10,alpha=0.7)+
  geom_point(aes(y=y2,color=seq2),size=10,alpha=0.1)+
  geom_point(aes(y=y3,color=seq3),size=10,alpha=0.1)+
  geom_point(aes(y=y4,color=seq4),size=10,alpha=0.7)+
  theme(panel.background = element_blank(), axis.text = element_blank(),
        axis.ticks = element_blank(),legend.position = "none")+
  labs(x=" ", y=" ",title="Sequences After Conditioning") 

Probability Models

Example Probability Models

Working with probability models

Minimax Theory

Applying Minimax Theory

Statistical Learning

Appplying Statistical Learning

Average case over distributions

Worst case analysis of sequences

Adversarial Decision-Making

Example: Sequences

Online Learning and Regret Minimization

Applying Online Learning

Criteria vs method

Future Classes: Forecasting theory