Today

Nonlinear Models - Derivation

Nonlinear Models - Calculation

Optimization Issues

Nonlinear Least Squares

\[Y=f(X,\theta_0)+u\] \[\theta_0\in\Theta\] \[E[u|X]=0\]

Empirical Example: Kroft et al (2014)

Results: Graph

Estimated Function

Estimated Function

Results: Table

Table of Estimates

Table of Estimates

Consistency in Nonlinear Models

Consistency of Nonlinear Least Squares

Asymptotic distribution theory: Intuition

Asymptotic Distribution: Assumptions

  1. Consistency \(\widehat{\theta}\overset{p}{\rightarrow}\theta_0\)
  2. Twice Differentiability: \(\frac{\partial}{\partial\theta}Q(\theta)\) and \(\frac{\partial^2}{\partial\theta^2}Q(\theta)\) exist, are bounded
  1. Sample first derivative asymptotically normal with limit mean 0
    \[\sqrt{n}\frac{\partial}{\partial\theta}\widehat{Q}(\theta_0)\overset{d}{\rightarrow}N(0,\Sigma_Q)\]
  2. Sample second derivative converges to population second derivative \[\frac{\partial^2}{\partial\theta^2}\widehat{Q}(\widehat{\theta})\overset{p}{\rightarrow}\frac{\partial^2}{\partial\theta^2}Q(\theta)\]

Meaning for NLLS

Asymptotic Distribution: Derivations

Nonlinear Least Squares Assumptions

NLLS results

Nonlinear Least Squares: Distribution

\[\Sigma=(\frac{\partial^2}{\partial\theta^2}Q(\theta_0))^{-1}\Sigma_Q(\frac{\partial^2}{\partial\theta^2}Q(\theta_0))^{-1}\] \[\Sigma_Q=4E[u^2(\frac{\partial}{\partial\theta}f(X,\theta_0))^\prime(\frac{\partial}{\partial\theta}f(X,\theta_0))]\] \[\frac{\partial^2}{\partial\theta^2}Q(\theta)=2E[(Y-f(X,\theta_0))\frac{\partial^2}{\partial\theta^2}f(X,\theta_0)-(\frac{\partial}{\partial\theta}f(X,\theta_0))^{\prime}(\frac{\partial}{\partial\theta}f(X,\theta_0))]\]

Testing

\[\frac{\widehat{\theta}_j-\theta_{0,j}}{\widehat{\Sigma}_{jj}/\sqrt{n}}\overset{d}{\rightarrow}N(0,1)\]

Simulation Example

# Generate some data from a nonlinear model
a0<-2
b0<-0.5
x<-5*runif(50)
y<-a0*exp(b0*x)+rnorm(50) #Include normal noise
#Estimate correctly specified model
#Start minimization going downhill from some 
#reasonable guess for parameter values
model<-nls(formula=y~a*exp(b*x), start=list(a=1,b=1))
#Display results including inference
nls.summary<-summary(model)

Results (code)

(nls.summary)

Results

## 
## Formula: y ~ a * exp(b * x)
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a  2.06150    0.12839   16.06   <2e-16 ***
## b  0.49093    0.01497   32.80   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.06 on 48 degrees of freedom
## 
## Number of iterations to convergence: 6 
## Achieved convergence tolerance: 1.089e-08

Summary

Next time