Today

Nonlinear Estimation

\[Y=\beta_0+\beta_1X_1 +\beta_2X_2+\ldots+\beta_kX_k + u\]

\[Y=f(X,\theta) +u\]

Examples

Principles

Empirical Risk Minimization

Maximum Likelihood

Method of Moments

\[E[(Y-f(X,\theta_0))t(X)]=0\]

Optimization Estimators and Method of moments

Nonlinear Regression

Doing more with linearity

Shared Principles

Numerical Optimization

Simulation using nls command

# Generate some data from a nonlinear model
a0<-2
b0<-0.5
x<-5*runif(50)
y<-a0*exp(b0*x)+rnorm(50) #Include normal noise
#Estimate correctly specified model
#Start minimization going downhill from some 
#reasonable guess for parameter values
model<-nls(formula=y~a*exp(b*x), start=list(a=1,b=1))

Example: Results (code)

(model)

Example: Results

## Nonlinear regression model
##   model: y ~ a * exp(b * x)
##    data: parent.frame()
##      a      b 
## 2.1253 0.4843 
##  residual sum-of-squares: 43.49
## 
## Number of iterations to convergence: 6 
## Achieved convergence tolerance: 1.719e-07

Graph

#Generate points to plot predictions
xn<-seq(0,5,length=1000)
ee<-predict(model,list(x=xn)) #Predicted y
plot(x,y,xlab="x",ylab="y",
     main="Nonlinear Least Squares Fit")
lines(xn,ee,lty=2,col="blue")

Graph

Consistency: Assumptions

Identification condition: Interpretation

Uniformity: interpretation

\[\underset{\theta\in\Theta}{\sup}|\widehat{Q}(\theta)-Q(\theta)|\overset{p}{\rightarrow}0\]

Neural Networks

Neural Network Modeling

Next Time

Consistency: Proof (supplemental: graphical version on board)

\[Pr(|\widehat{\theta}-\theta_0|>\epsilon)<Pr(Q(\widehat{\theta})-Q(\theta_0)>\delta)\] \[=Pr(Q(\widehat{\theta})-\widehat{Q}(\widehat{\theta})+\widehat{Q}(\widehat{\theta})-Q(\theta_0)>\delta)\] \[\leq Pr(Q(\widehat{\theta})-\widehat{Q}(\widehat{\theta})+\widehat{Q}(\theta_0)-Q(\theta_0)>\delta)\]

\[\leq Pr(2\underset{\theta\in\Theta}{\sup}|\widehat{Q}(\theta)-Q(\theta)|>\delta)\rightarrow 0\]