library(dagitty) #Library to create and analyze causal graphs
library(ggplot2) #Plotting
suppressWarnings(suppressMessages(library(ggdag))) #library to plot causal graphs

Time Series Causal Inference

Example Applications

Time Series Statistical Properties

Dependence and Limit Theorems

Inference For Time Series

Point Interventions

Difference in Means Estimator

Repeated experiments

repexdag<-dagify(Y3~X3+Y2+X2+Y1+X1,Y2~X2+Y1+X1,Y1~X1) #create graph 
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X1 = 0, Y1 = 0, X2=1, Y2=1, X3=2, Y3=2),
               y=c(X1 = 1, Y1 = 0, X2=1, Y2=0, X3=1, Y3=0))
  coords_df<-coords2df(coords)
  coordinates(repexdag)<-coords2list(coords_df)
ggdag(repexdag, edge_type = "arc")+theme_dag_blank()+labs(title="X randomized in every time period") #Plot causal graph

Generalized IRFs

Sequential Conditional Random Assignment

seqdag<-dagify(Y4~X4+Y3+X3+Y2+X2+Y1+X1,Y3~X3+Y2+X2+Y1+X1,Y2~X2+Y1+X1,Y1~X1,
                 X4~Y3+X3+Y2+X2+Y1+X1,X3~Y2+X2+Y1+X1, X2~Y1+X1) #create graph 
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X1 = 0, Y1 = 0, X2=1, Y2=1, X3=2, Y3=2, X4=3, Y4=3),
               y=c(X1 = 1, Y1 = 0, X2=1, Y2=0, X3=1, Y3=0, X4=1, Y4=0))
  coords_df<-coords2df(coords)
  coordinates(seqdag)<-coords2list(coords_df)
ggdag(seqdag, edge_type = "arc")+theme_dag_blank()+labs(title="X may depend on all past variables") #Plot causal graph

Verifying Conditional Random Assignment

library(gridExtra) #Graph Display
splitgraphs<-list()
predag<-dagify(Y3~X3+Y2+X2+Y1+X1,Y2~X2+Y1+X1,Y1~X1,
                 X3~Y2+X2+Y1+X1, X2~Y1+X1) #create graph 
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X1 = 0, Y1 = 0, X2=1, Y2=1, X3=2, Y3=2),
               y=c(X1 = 1, Y1 = 0, X2=0.8, Y2=0.2, X3=1, Y3=0))
  coords_df<-coords2df(coords)
  coordinates(predag)<-coords2list(coords_df)
splitgraphs[[1]]<-ggdag(predag)+theme_dag_blank()+labs(title="DAG without intervention",subtitle="X may depend on all past variables") #Plot causal graph


swig<-dagify(Y3_x2~X3_x2+Y2_x2+x2+Y1+X1,Y2_x2~x2+Y1+X1,Y1~X1,
                 X3_x2~Y2_x2+x2+Y1+X1, X2~Y1+X1) #create graph 
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X1 = 0, Y1 = 0, X2=0.8, x2=1.2, Y2_x2=1, X3_x2=2, Y3_x2=2),
               y=c(X1 = 1, Y1 = 0, X2=0.8, x2=0.8, Y2_x2=0.2, X3_x2=1, Y3_x2=0))
  coords_df<-coords2df(coords)
  coordinates(swig)<-coords2list(coords_df)
splitgraphs[[2]]<-ggdag(swig)+theme_dag_blank()+labs(title="SWIG with intervention on X2",subtitle="X may depend on all past variables") #Plot causal graph

grid.arrange(grobs=splitgraphs,nrow=1,ncol=2) #Arrange In 2x2 grid

#Test that effect of X2 on Y2, Y3 identifiable by adjustment
dseparated(swig,c("Y3_x2","Y2_x2"),"X2",c("Y1","X1"))
## [1] TRUE

What needs to be controlled for? An aside on expectations

Markovian Sequential Conditional Random Assignment

markovdag<-dagify(Y4~X4+Y3+X3,Y3~X3+Y2+X2,Y2~X2+Y1+X1,Y1~X1,
                 X4~Y3+X3,X3~Y2+X2, X2~Y1+X1) #create graph 
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X1 = 0, Y1 = 0, X2=1, Y2=1, X3=2, Y3=2, X4=3, Y4=3),
               y=c(X1 = 1, Y1 = 0, X2=1, Y2=0, X3=1, Y3=0, X4=1, Y4=0))
  coords_df<-coords2df(coords)
  coordinates(markovdag)<-coords2list(coords_df)
ggdag(markovdag, edge_type = "arc")+theme_dag_blank()+labs(title="X and Y depend on immediate past only") #Plot causal graph

Estimation

Modeling Assignment and Outcomes

Illustration: Monetary Policy Effects

Propensity Time Series

Angrist, Jordà, and Kuersteiner (2018) Results

Impulse Response Functions

Linear Estimators: Local Projections and VARs

LP vs VAR IRFs

Alternate Identification Approaches

Sequential Exposures

Conclusions

References

Angrist, Joshua D, Òscar Jordà, and Guido M Kuersteiner. 2018. “Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited.” Journal of Business & Economic Statistics 36 (3): 371–87.
Auclert, Adrien, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub. 2021. “Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models.” Econometrica 89 (5): 2375–2408.
Bernanke, Ben S, Jean Boivin, and Piotr Eliasz. 2005. “Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach.” The Quarterly Journal of Economics 120 (1): 387–422.
Blanchard, OJ, and Danny Quah. 1989. “The Dynamic Effects of Aggregate Demand and Supply Disturbances.” American Economic Review 79 (4): 655–73.
Boppart, Timo, Per Krusell, and Kurt Mitman. 2018. “Exploiting MIT Shocks in Heterogeneous-Agent Economies: The Impulse Response as a Numerical Derivative.” Journal of Economic Dynamics and Control 89: 68–92. https://doi.org/https://doi.org/10.1016/j.jedc.2018.01.002.
Bradley, Richard C. 2005. “Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions.” Probability Surveys 2: 107–44.
Doukhan, Paul, Pascal Massart, and Emmanuel Rio. 1994. “The Functional Central Limit Theorem for Strongly Mixing Processes.” In Annales de l’IHP Probabilités Et Statistiques, 30:63–82. 1.
Hernán, Miguel A, and James M Robins. 2020. “Causal Inference: What If.” Boca Raton: Chapman & Hall/CRC.
Kato, Masahiro, Takuya Ishihara, Junya Honda, and Yusuke Narita. 2021. “Efficient Adaptive Experimental Design for Average Treatment Effect Estimation.” http://arxiv.org/abs/2002.05308.
Kuttner, Kenneth N. 2001. “Monetary Policy Surprises and Interest Rates: Evidence from the Fed Funds Futures Market.” Journal of Monetary Economics 47 (3): 523–44.
Lazarus, Eben, Daniel J Lewis, James H Stock, and Mark W Watson. 2018. “HAR Inference: Recommendations for Practice.” Journal of Business & Economic Statistics 36 (4): 541–59.
Li, Dake, Mikkel Plagborg-Møller, and Christian K Wolf. 2021. “Local Projections Vs. VARs: Lessons from Thousands of DGPs.” arXiv Preprint arXiv:2104.00655.
Ljungqvist, Lars, and Thomas J Sargent. 2018. Recursive Macroeconomic Theory. MIT press.
Mckay, Alisdair, and Christian K Wolf. 2021. “What Can Time-Series Regressions Tell Us about Policy Counterfactuals?”
Montiel Olea, José Luis, and Mikkel Plagborg-Møller. 2021. “Local Projection Inference Is Simpler and More Robust Than You Think.” Econometrica 89 (4): 1789–1823.
Nakamura, Emi, and Jón Steinsson. 2018. “High-Frequency Identification of Monetary Non-Neutrality: The Information Effect.” The Quarterly Journal of Economics 133 (3): 1283–1330.
Newey, Whitney K, and Kenneth D West. 1987. “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix.” Econometrica: Journal of the Econometric Society, 703–8.
Plagborg-Møller, Mikkel. 2019. “Bayesian Inference on Structural Impulse Response Functions.” Quantitative Economics 10 (1): 145–84.
Plagborg-Møller, Mikkel, and Christian K Wolf. 2021. “Local Projections and VARs Estimate the Same Impulse Responses.” Econometrica 89 (2): 955–80.
Rambachan, Ashesh, and Neil Shephard. 2021. “When Do Common Time Series Estimands Have Nonparametric Causal Meaning?” https://scholar.harvard.edu/shephard/publications/nonparametric-dynamic-causal-model-macroeconometrics.
Ramey, Valerie A. 2016. “Macroeconomic Shocks and Their Propagation.” Handbook of Macroeconomics 2: 71–162.
Richardson, Thomas S, and James M Robins. 2013. “Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality.” Center for the Statistics and the Social Sciences, University of Washington Series. Working Paper 128 (30): 2013.
Sims, Christopher A. 1980. “Macroeconomics and Reality.” Econometrica: Journal of the Econometric Society, 1–48.
Stock, James H, and Mark W Watson. 2018. “Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments.” The Economic Journal 128 (610): 917–48.
Stokey, Nancy L, Robert Lucas, and Ed Prescott. 1989. Recursive Methods in Economic Dynamics. Harvard University Press.
Uhlig, Harald. 2005. “What Are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure.” Journal of Monetary Economics 52 (2): 381–419.
Waudby-Smith, Ian, David Arbour, Ritwik Sinha, Edward H. Kennedy, and Aaditya Ramdas. 2021. “Doubly Robust Confidence Sequences for Sequential Causal Inference.” http://arxiv.org/abs/2103.06476.
Wolf, Christian K. 2020. “The Missing Intercept: A Demand Equivalence Approach.”