Causality: What is it?

Causal Hierarchy

Structural Causal Model (SCM)

Causal Implications of SCM

Causal graphs

library(dagitty) #Library to create and analyze causal graphs
suppressWarnings(suppressMessages(library(ggdag))) #library to plot causal graphs
yxdag<-dagify(Y~X) #create graph with arrow from X to Y
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X = 0, Y = 1),y=c(X = 0, Y = 0))
  coords_df<-coords2df(coords)
  coordinates(yxdag)<-coords2list(coords_df)
ggdag(yxdag)+theme_dag_blank()+labs(title="X causes Y",subtitle="X is a parent of Y, Y is a child of X") #Plot causal graph

Direced Acyclic Graphs

Independent Errors

yxzdag<-dagify(Y~X+Z, X~Z) #create graph with arrow from X to Y
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X = 0, Y = 1, Z=0.5),y=c(X = 0, Y = 0, Z=0.5))
  coords_df<-coords2df(coords)
  coordinates(yxzdag)<-coords2list(coords_df)
ggdag(yxzdag)+theme_dag_blank()+labs(title="Observed Common Cause Z") #Plot causal graph

yxydag<-dagitty("dag{Y<->X; X->Y}") #create graph with arrow from X to Y
#Set position of nodes so they lie on a straight line
  coords<-list(x=c(X = 0, Y = 1),y=c(X = 0, Y = 0))
  coords_df<-coords2df(coords)
  coordinates(yxydag)<-coords2list(coords_df)
ggdag(yxydag)+theme_dag_blank()+labs(title="Unobserved Common Cause") #Plot causal graph

Limitations of DAG framework

Potential Outcomes

Potential Outcomes and Finite Samples

Why causality is hard: nonidentifiability

\(Y_i^1\) \(Y_i^0\) \(X_i\) \(Y_i\)
1 0 1 1
1 0 1 1
1 0 0 0
1 0 0 0
\(Y_i^1\) \(Y_i^0\) \(X_i\) \(Y_i\)
1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0

Nonidentifiability of causal efects

Experiments

What experiments don’t identify

\(Y_i^1\) \(Y_i^0\) \(X_i\) \(Y_i\)
1 0 1 1
0 0 1 0
1 1 1 1
1 0 0 0
0 0 0 0
1 1 0 1
\(Y_i^1\) \(Y_i^0\) \(X_i\) \(Y_i\)
1 0 1 1
0 1 1 0
1 0 1 1
1 0 0 0
0 1 0 1
1 0 0 0

What’s going on

Program Evaluation

The “credibility revolution” worldview (Angrist and Pischke (2010))

The causal inference roadmap

Class Goals

Next time

References

Abadie, Alberto, and Matias D Cattaneo. 2018. “Econometric Methods for Program Evaluation.” Annual Review of Economics 10: 465–503.
Angrist, Joshua D, and Jörn-Steffen Pischke. 2010. “The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con Out of Econometrics.” Journal of Economic Perspectives 24 (2): 3–30.
Bareinboim, Elias, Juan D Correa, Duligur Ibeling, and Thomas Icard. 2020. “On Pearl’s Hierarchy and the Foundations of Causal Inference.” ACM Special Volume in Honor of Judea Pearl (Provisional Title) 2 (3): 4.
Geyer, Charles J. 2013. “Asymptotics of Maximum Likelihood Without the LLN or CLT or Sample Size Going to Infinity.” In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris l. Eaton, 1–24. Institute of Mathematical Statistics.
Haile, Phil. 2020. ‘Structural Vs. Reduced Form’: Language, Confusion, and Models in Empirical Economics.” http://www.econ.yale.edu/~pah29/intro.pdf.
Hernán, Miguel A, and James M Robins. 2020. “Causal Inference: What If.” Boca Raton: Chapman & Hall/CRC.